(Revised) June 17, 2020 PK# 2386-20.065 Z190-238(AU)

TRAFFIC IMPACT ANALYSIS

Project:

Preston Center-Westchester Drive Mixed Use Redevelopments In Dallas, Texas

Prepared for: **City of Dallas**

On behalf of: RB Pass, LLC and Matilda Realty-I, L.P.

Prepared by:

Stere E. Stoner

Steve E. Stoner, P.E., PTOE

7557 Rambler Road, Suite 1400 Dallas, Texas 75231-2388 (972) 235-3031 <u>www.pkce.com</u> TX.REG: ENGINEERING FIRM F-469 TX. REG. SURVEYING FIRM LS-100080-00

EXECUTIVE SUMMARY

The services of **Pacheco Koch** were jointly retained by **RB Pass**, **LLC** and **Matilda Realty-I**, **L.P.** to prepare a Traffic Impact Analysis (TIA) for two proposed redevelopments on adjacent properties in Preston Center—6030 Luther Lane (RB Pass) and 8215 Westchester Drive (Matilda) in Dallas, Texas. The Projects will replace existing mixed commercial and medical office uses with new high-rise construction containing residential, hotel, and commercial uses. Buildout of the Projects is estimated to be completed in 2023. A TIA is required by the City of Dallas for review as part of the Owner's request to create a new PD Subdistrict for the subject properties.

The purpose of this report is to estimate the incremental impact on the background traffic operational conditions caused by the proposed development within a specific study area as determined by standardized engineering analyses. The study parameters used in this TIA are based upon the requirements of City and are consistent with the standard industry practices used in similar studies.

Based upon the analyses performed herein, Pacheco Koch developed the following findings and recommendations.

FINDING: The proposed residential and hotel developments on the subject sites will replace existing commercial and medical office uses. Based upon industry-standard calculations, the trip generation rates on a per-squarefoot basis for hotel, and especially residential uses, are considerably lower than commercial and medical office uses. Hence, despite the significant difference in building square footage, the net increase in trip generation between the proposed uses and existing uses is relatively low.

FINDING: Existing traffic operations at the study area intersections of Luther Lane and Westchester Drive, Luther Lane and Douglas Avenue, and Westchester Drive and Sherry Lane are very good (efficient) during peak hour periods. With the addition of estimated background growth and traffic generated by the proposed residential and hotel developments, the study area intersections are expected to experience very little net impact and will continue to operate at very good conditions. No operational mitigation measures are required.

FINDING: In the proposed condition, removal of the existing angled parking along Westchester Drive will eliminate associated parking maneuvers from the street and allow for an alignment of the western curbline. These changes will improve traffic flow along the street. The proposed modifications will also provide an aligned pedestrian corridor with consistent landscaping along both property frontages that will significantly improve the pedestrian environment.

 RECOMMENDATION: It is recommended that ambient lighting be added in the vicinity of the site to improve nighttime visibility of and for pedestrians.

FINDING: The RB Pass site can easily stage up to eight vehicles on site in the drop-off area of the motor court without affecting internal traffic flow and another seven vehicles along the internal drive aisle during special (hotel) event conditions, if required. During hotel events valet staffing will be increased accordingly.

RECOMMENDATION: It is also recommended that hotel management develop contingency operational plans if undue impact to the local street system occurs. Such traffic management strategies may include: employment of off-duty police officers at key locations, advanced coordination with guests regarding traffic routes, parking, etc.

END

PK 2386-20.065A (AJV: 06/16/20)

1.1

EXHIBIT

Dallas

TRACT VIII - SUBAREA A PROJECT DA	TA
SITE AREA	32,000 SF, 0.7346 AC
USES	RETAIL, RESTAURANT, HOTEL, MULTIFAMILY
MULTIFAMILY DENSITY	MAXIMUM 90 DWELLING UNITS
LOT COVERAGE BELOW 60 FEET	85%
LOT COVERAGE ABOVE 60 FEET	60%
MAXIMUM STRUCTURE HEIGHT	305 FEET
PARKING*	PER PD 314

* PARKING REQUIREMENTS TO BE CONFIRMED AT THE TIME OF INDIVIDUAL TENANT FINISH OUT PERMIT APPLICATION AND MAY VARY BASED ON TENANT MIX. ALL REQUIRED PARKING ON TRACT 5 / BLOCK 5623 TO BE LOCATED BELOW GRADE.

33,153 SF, 0.761 AC									
MULTIFAMILY RESIDENTIAL									
MAXIMUM 270 DWELLING UNITS **									
70%									
60%									
350 FEET									
PER PD 314									
-									

TRAFFIC IMPACT ANALYSIS Preston Center-Westchester Drive Mixed Use Redevelopments Dallas, Texas

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
SITE LOCATION MAPii	ii
PRELIMINARY SITE PLANiv	V
INTRODUCTION	1 1 2 3
TRAFFIC IMPACT ANALYSIS	4
Approach 4 Background Traffic Volume Data 5 Existing Volumes 5 Projected Background Traffic Volumes 5 Site-Related Traffic 5 Trip Generation and Mode Split 5 Trip Distribution and Assignment 6 Site-Generated Traffic Volumes 6 Traffic Operational Analysis — Roadway Links Description 7 Summary of Results 6 Traffic Operational Analysis — Roadway Intersections Description 6 Summary of Results 6 Description 6 Summary of Results 6 Description 6 Summary of Results 6 Description 6 <	455555667788890
SITE ACCESS EVALUATION	0 3
SUMMARY OF FINDINGS AND RECOMMENDATIONS	3

June 17, 2020

LIST OF TABLES:

- Table 1. Development Program Summary
- Table 2. Historical Daily Traffic Volume Data
- Table 3. Projected Trip Generation Summary
- Table 4. Roadway Link Capacity Analysis Results Summary
- Table 5. Peak Hour Intersection Capacity Analysis Results Summary
(Signalized Intersections)
- Table 6. Peak Hour Intersection Capacity Analysis Results Summary
(Unsignalized Intersections)
- Table 7. Site Access Evaluation

LIST OF EXHIBITS:

Exhibit 1. Site Location and Study Area Map

LIST OF APPENDICES:

APPENDIX A. Traffic Volumes Exhibits

APPENDIX B. Detailed Traffic Volume Data

- APPENDIX C. Site-Generated Traffic Supplement
- APPENDIX D. Detailed Intersection Capacity Analysis Results

APPENDIX E. Site Access Evaluation Supplement

INTRODUCTION

The services of **Pacheco Koch** (PK) were jointly retained by **RB Pass, LLC** and **Matilda Realty-I, L.P.** to prepare a Traffic Impact Analysis for proposed redevelopment in Preston Center at 6030 Luther Lane (RB Pass) and 8215 Westchester Drive (Matilda) in Dallas, Texas. The Project will replace low-rise mixed commercial and medical office uses with high-rise residential, hotel, and commercial uses. The Projects are collectively referred to herein as *Preston Center-Westchester Drive Mixed Use Redevelopments*. Preliminary site plan for each Project, prepared by **HKS** (RB Pass) and **GFF** (Matilda), and a site location map (**Exhibit 1**) are provided following the EXECUTIVE SUMMARY section of this report.

In order to facilitate development of the Project, RB Pass, LLC and Matilda Realty-I, L.P. (the joint "Applicant") have made a request to the City of Dallas (the "Approving Agency") to create a new PD Subdistrict for the subject properties. As part of application process for this request, submittal of a TIA commissioned by the Applicant must be submitted to the Approving Agency for review.

This TIA was prepared by traffic engineers at Pacheco Koch (the "Engineer") in accordance with industry and local standards. Pacheco Koch is a licensed engineering firm, based in Texas, that provides professional engineering and related services.

Purpose

A Traffic Impact Analysis (TIA) is an engineering study used to provide information on the projected off-site impacts produced by a specific Project on the traffic operations of public traffic facilities. Commissioning a TIA may be required by an Approving Agency when an Applicant is seeking approvals or entitlements for the Project. Using standardized analysis methodologies, the findings of the TIA are used to gage the direct impacts on the transportation system that are attributable to the Project. Under certain circumstances and within legal parameters, the Approving Agency may require the Applicant to fund the improvement(s) needed to mitigate the impacts.

A TIA should be prepared by a licensed Engineer skilled in the principles of traffic and transportation engineering and planning. The general methodologies, processes, and guidelines used in a TIA are established by industry standards which are maintained by organizations such as the Institute of Transportation Engineers (ITE) and others—although, the project-specific parameters of the study (e.g., study locations, analysis scenarios, analytical assumptions, etc.) may be established by local ordinances or technical staff of the Approving Agency.

Based upon the findings of the analysis, the Engineer may suggest or recommend modifications to the transportation system that, in the Engineer's opinion, could improve overall traffic operations, safety, site access, circulation, etc. Such proposals may or may not be directly related to the traffic impacts of the Project. Implementation of any modifications to the transportation system are subject to

the discretion and approval of the respective agency that is responsible for the operation of the facilities. Also, the Engineer's proposals should not be considered mandatory and are not intended to assign or imply funding responsibility.

A TIA is not a detailed site plan review nor a substitute for local or regional transportation planning.

Project Description

The Project will generally replace existing, low-rise commercial and medical office uses with high-rise residential and hotel uses. Although the two projects are independent, it is assumed for purposes of this study that both projects will be completed by 2023. A summary of the proposed development programs is provided in **Table 1**.

PROPERTY	EXISTING USES (AMOUNT)	PROPOSED USES (AMOUNT)
6030 Luther Lane	Mixed commercial— retail, restaurant, and personal service (38,764 SF)	Hotel (225 Rooms, 3,500 SF Restaurant) Residential (63 DU) Retail/Restaurant (5,000 SF)
8215 Westchester Drive	Medical Office (42,077 SF)	Residential (270 DU)

Table 1. Development Program Summary

NOTE: The development program provided above is based upon the most current and complete information available at the time of this study publication.

The existing RB Pass parcel is essentially fully developed with no on-site parking; public, on-street parking exists along the north and east sides of the property. The remaining parking demand generated by the site is accommodated by other, public parking located on-street and in the Preston Center public garage located catty-corner from the site. The existing Matilda parcel does not front any on-street public parking but does provide an internal parking structure to accommodate tenant and guest parking needs.

The collective 1.5-acre subject site is currently zoned Preston Center Special Purpose District (PD 314). The RB Pass parcel is part of PD 314 Tract III; and, the Matilda parcel is part of PD 314 Tract IV.

Study Parameters

The study parameters used in this TIA are based upon industry standard practices and requirements of the City of Dallas. Project-specific study parameters were reviewed with City staff at the outset of the study.

This TIA analyzed the day-to-day traffic operations on the public roadway system at time periods that have the greatest combined volume of the background traffic and site-related traffic. Due to the predominant influence of background traffic, the weekday AM and PM peak hours of adjacent street traffic are typically

analyzed. In addition to the peak hour operational analysis, Pacheco Koch also evaluated the pedestrian environment at the Luther-Westchester intersection during the noon/lunch period and the proposed valet operations along Westchester Drive.

The analysis scenarios addressed in this study include the following:

- at existing conditions ("Existing" scenario)
- at site buildout year without site-generated traffic ("Background" scenario)
- at site buildout year with site-generated traffic ("Buildout" scenario)
- at five-year-after-buildout horizon with site-generated traffic ("Horizon" scenario)

NOTE: Analyses of all future conditions scenarios utilize projected traffic volumes derived by Pacheco Koch using reasonable and customary assumptions that are based upon existing conditions where possible. ITE appropriately points out that, due to natural changes in traffic patterns that occur over time, the margin of error for projected traffic volumes increases as the length of time of the projection increases; and, any projection of hourly turning movement volumes beyond five years inherently contain significant assumptions.

The following technical assumptions were also made in this analysis.

- The existing land uses on the subject properties actively generate vehicular traffic on a day-to-day basis. For purposes of this study, the existing trip generation was calculated and deducted from the projected trip generation for the proposed uses. Detailed methodologies applied are described in the Site-Related Traffic section of this report.
- Pacheco Koch is aware of the potential redevelopment of the Preston Center garage into a residential/mixed-use project that will include expansion of the public parking facility. While this project may result in significant changes to traffic conditions in the Preston Center area, the project is still speculative and not been approved. The Developer of the project is also commissioning a separate Traffic Impact Analysis for the project, which will be submitted to and reviewed by the City at a later time; but, at the time of this study publication, was not available for review.

Study Area

The study area for a TIA is typically defined to allow an assessment of the most relevant traffic impacts to the local area. The extent of the study area is discretionary but is generally commensurate with the scale of the proposed development. Special localized factors may also be considered. The specific locations included in the study area of this TIA are listed below and depicted in **Exhibit 1**.

Traffic-Signal-Controlled Intersections:

(a) Douglas Avenue and Luther Lane

STOP-Sign-Controlled Intersections:

- (b) Luther Lane and Westchester Drive
- (c) Westchester Drive and Sherry Lane
- (d) Major site driveways

Roadway Links:

- (A) Luther Lane, west of Westchester Drive
 - Existing operation and cross-section: two lanes; two-way operation; on-street parking (angled) in some segments
 [NOTE: one-way, eastbound operation east of Westchester Drive]
 - City of Dallas Thoroughfare Plan Designation: none (local)
 - Current Daily Traffic Volume: 4,654 (Wednesday, March 11, 2020)
 - Dested Speed Limit: 30 MPH (prima facie)
- (B) Westchester Drive, south of Luther Lane
 - Existing operation and cross-section: two lanes; two-way operation; on-street parking (both angled and parallel) in some segments
 - [NOTE: one-way, southbound operation north of Luther Lane]
 - City of Dallas Thoroughfare Plan Designation: none (local)
 - Current Daily Traffic Volume: 3,295 (Wednesday, March 11, 2020)
 - Dested Speed Limit: 30 MPH (prima facie)

TRAFFIC IMPACT ANALYSIS

The following is a description of the analyses performed as part of this Traffic Impact Analysis.

Approach

The TIA presented in this report analyzed the operational conditions for the peak hours and study area as defined above using standardized analytical methodologies where applicable. Current (or recent) traffic volume data were collected on a typical day throughout the study area to represent existing traffic conditions. Where applicable, growth factors were applied to the existing volumes to project future background traffic at the site buildout year conditions. Then, traffic generated by the proposed development was projected using the standard four-step approach: Trip Generation, Mode Split, Trip Distribution, and Traffic Assignment. By adding the site-generated traffic to the background traffic, the resulting site-plus-background traffic impact to operational conditions may be assessed from which approach mitigation measures may be recommended, if needed.

Background Traffic Volume Data

Existing Volumes

Current traffic volumes were collected during the analysis periods at the study area intersections on Wednesday, March 11, 2020. Traffic volumes are graphically summarized in APPENDIX A; detailed data sheets are provided in APPENDIX B.

Projected Background Traffic Volumes

Background traffic growth is defined as the normal growth of traffic that is not directly related to the subject development of this study. A review of historical traffic volume data can provide an indication of the local traffic growth patterns. **Table 2** provides a comparison of prior traffic volumes from institutional sources in the vicinity of the subject site, from which PK calculated an annual growth rate.

Table 2. Historical Daily	Traffic Volume Data
---------------------------	---------------------

ROADWAY SEGMENT	HISTORICAL DAILY VOLUME (DATE)	ANNUAL GROWTH RATE
Luther Lane, between Preston Road and Kate Street	4,183 ('14)^ 4,210 ('09)^ 5,120 ('04)^	-0.13% -3.84%

Data Source: A = TxDOT

According to these data, traffic volumes in the vicinity of the subject site are generally slightly decreasing. Although no positive growth is evident, Pacheco Koch assumed a growth rate of one percent (1.0%) per year for purposes of this study in order to estimate future background traffic volumes.

By applying the assumed growth rate(s) described previously, future background traffic volumes at the Project buildout year were calculated for the study area intersections. These volumes are graphically summarized in APPENDIX A.

Site-Related Traffic

Trip Generation and Mode Split

Trip generation is calculated in terms of "trip ends" – a trip end is a one-way vehicular trip entering or exiting a site driveway (i.e., a single vehicle entering and exiting a site represents two trip ends). Trip generation for this Project was calculated using the Institute of Transportation Engineers (ITE) *Trip Generation* manual (10th Edition). ITE *Trip Generation* is a compilation of actual, vehicular traffic volume generation data and statistics by land use as collected over several decades by creditable sources across the country. Using the ITE equations and rates is an accepted methodology to calculate the projected site-generated traffic volumes for many land uses (though engineering judgment is strongly advised).

The base trip generation data from ITE generally reflect average conditions for a standalone use on a typical day. However, in some cases, the Engineer may judge that other factors may be of sufficient significance to warrant adjusting the base

ITE calculations in order to more accurately reflect Project-specific conditions. For this analysis, no adjustments to the base ITE data were applied.

"Mode split" refers to the consideration of all modes of transportation. Typically, the majority of trips occur by passenger vehicles such as personal autos and ridesharing services. But, some alternative modes—such as travel by public transit, bicycle, and walking—do not generate additional vehicle trips. The default trip generation data from ITE is summarized in vehicular trip ends and incorporate "typical" mode split characteristics. However, when travel by alternative mode has the potential to be greater than normal, a reduction in the number of vehicular trip volume may be warranted. For this analysis, the following assumptions were applied:

• For all existing and proposed retail and restaurant uses (RB Pass parcel), a 50% reduction was applied to account for walking trips.

Table 3 provides a summary of the calculated net increase in trip ends generated by the project. Supplemental information used in the trip generation calculations is provided in APPENDIX C.

SCENARIO (BOTH PROPERTIES,	DAILY TRIP ENDS	AM PEAK HOUR TRIP ENDS (ADJACENT STREET PEAK)	PM PEAK HOUR TRIP ENDS (ADJACENT STREET PEAK)				
COMBINED	(WLLKDAT)	Total (In/Out)	Total (In/Out)				
Existing Uses	1,931	114 (86/28)	194 (69/124)				
Proposed Uses	3,550	224 (96/128)	272 (149/123)				
Net Increase	1,619	+110 (+10/+100)	+78 (+80/-1)				

Table 3. Projected Trip Generation Summary

Trip Distribution and Assignment

The distribution and assignment of site-generated trip ends to the surrounding roadway system is determined by proportionally estimating the orientation of travel via various travel routes. This is a subjective exercise based upon professional judgment considering such factors as directional characteristics of existing local traffic, trip attributes (e.g., trip purpose, trip length, travel time, etc.), roadway features (e.g., capacity, operational conditions, character of environment), regional demographics, etc.

Traffic for the proposed redevelopment was distributed and assigned to the study area roadway network based upon consideration of the factors listed above. Detailed trip distribution and traffic assignment calculations and results are summarized in APPENDIX C.

Site-Generated Traffic Volumes

Site-generated traffic is calculated by multiplying the trip generation value (from **Table 3**) by the corresponding traffic assignments (from APPENDIX C). The resulting cumulative (for all uses) peak period site-generated traffic volumes at buildout of the Project are graphically summarized in APPENDIX A.

Traffic Operational Analysis — Roadway Links

Description

A roadway link is a segment of roadway between two intersections. Roadway link capacity analysis is a comparison of actual or forecasted traffic volumes to the theoretically optimum roadway capacity. The capacity of the roadway link is predominantly a function of the roadway's cross-section (i.e., number of lanes, lane widths, type of center divider, etc.). However, other more theoretical factors also apply, such as the character of environment and the functional classification of the roadway. Generally, roadway link capacity is less critical than intersection capacity; however, it can provide a gage of the utilization of given roadway.

A specific industry standard for roadway link capacity does not exist, but the typical concept is derived from a base saturation flow rate (i.e., the maximum theoretical rate of continuous flow under ideal, unobstructed conditions -- in the traffic engineering industry, this value is generally considered to range between 1,900-2,100 vehicles per lane per hour). A series of adjustment factors are then applied to the saturation flow rate to reflect the characteristics of a given location.

The North Central Texas Council of Governments (NCTCOG) – the metropolitan planning agency for the Dallas-Fort Worth region – has derived internal "hourly service volume" guidelines used for transportation modelling purposes. The NCTCOG values were based upon the principals presented in the *Highway Capacity Manual* with "regional calibration" factors applied. Though these perlane capacities, or "Service Volumes" (summarized in the table below), are intended for modelling purposes, they do provide a reasonable gage of theoretical capacity.

	Activity Density	Principo	al Arterial	Minor A Frontag	Arterial & ge Road	Collector & Local Street				
Area Type	Range (per acre)	Median- Divided Undivided or One- Way		Median- Divided or One- Way	Undivided Two-Way	Median- Divided or One- Way	Undivided Two-Way			
CBD	>125	725	650	725	650	475	425			
Outer Business	30-125	775	725	775	725	500	450			
Urban Residential	7.5-30	850	775	825	750	525	475			
Suburban Residential	1.8-7.5	900	875	900	825	575	525			
Rural	<1.8	1,025	925	975	875	600	550			

Hourly Service Volumes By Roadway Function

To determine the utilization of a roadway, the volume:capacty ratio can be calculated – a v/c ratio of less than 1.0 indicates that the roadway is operating under capacity. NCTCOG's Level of Service denominations are as follows:

Volume:Capacity Ratio \leq 65% is LOS A/B/C, Volume:Capacity Ratio > 65% and \leq 100% is LOS D/E, Volume:Capacity Ratio \geq 100% is LOS F

Summary of Results

For roadways adjacent to or in the vicinity of the subject site, the volume/capacity ratio was calculated for existing and site buildout conditions. A summary of the link capacity analysis is provided in **Table 4**. See specific recommendations in the *Recommendations* section of this report.

ROADWAY/ SCENARIO	PEAK HOUR VOLUME	THEORETICAL HOURLY CAPACITY	V:C RATIO/ LEVEL OF SERVICE
Luther Lane			
Existing Conditions	442	950	0.47 – A/B/C
Buildout Year-Background Conditions	455	950	0.48 – A/B/C
Buildout Year-Buildout Conditions	475	950	0.50 – A/B/C
Westchester Drive			
Existing Conditions	294	950	0.31 – A/B/C
Buildout Year-Background Conditions	303	950	0.32 – A/B/C
Buildout Year-Buildout Conditions	384	950	0.40 – A/B/C

Table 4. Roadway Link Capacity Analysis Results Summary

Traffic Operational Analysis — Roadway Intersections

Description

The level of performance of civil infrastructure can often be measured through an analysis of volume and capacity that considers various physical and operational characteristics of the system. For vehicular traffic an operational analysis of roadway intersection capacity over a 60-minute period is the most detailed type of analysis. An industry-standardized methodology for this type of analysis was developed by the Transportation Research Board and is presented in the Highway Capacity Manual (HCM). HCM uses the term "Level of Service" (or, LOS) to qualitatively describe the efficiency using a letter grade of A through F. Generally, LOS can be described as follows:

- LOS A = free, unobstructed flow
- LOS B = reasonably free flow
- LOS C = stable flow
- LOS D = approaching unstable flow
- LOS E = unstable flow, operating at design capacity
- LOS F = operating over design capacity

Traffic operational analysis is typically measured in one-hour periods during day-today peak conditions. In most urban settings, LOS C, or better, is desirable, although LOS D is considered to be acceptable in urban conditions; LOS E indicates a facility or maneuver is approaching capacity, while LOS F is theoretically an over-capacity condition. On highly-utilized transportation facilities, brief periods of LOS E or F conditions are not uncommon for during peak periods. In some cases measures to increase capacity, either through operational changes and/or physical improvements, can be identified to improve efficiency and sometimes raise Level of Service.

For traffic-signal-controlled ("signalized") intersections and STOP-controlled ("unsignalized") intersections, LOS is determined based upon the calculated average seconds of delay per vehicle. For signalized intersections the average delay per vehicle can be effectively calculated for the entire intersection; however, for unsignalized intersections the average delay per vehicle is calculated only by approach or by individual traffic maneuvers that must stop or yield right-of-way.

NOTE: The HCM unsignalized intersection analysis methodology was developed and calibrated for lowto-moderate volume intersections. When applied to intersections with one or more high-volume or highcapacity approaches, the analyses often reflect poor results (i.e., low Level of Service). However, the actual delay/operational conditions are typical of similar locations and do not necessarily represent unique conditions. Low-performing, high-volume, unsignalized intersections cannot be analytically mitigated unless a traffic signal is installed. (Traffic signal installation is subject to a detailed analysis of established criteria AND approval of the responsible agency. Neither Level of Service nor vehicle delay is a warrant for traffic signal installation.)

The	following	table	summarizes	the	LOS	criteria	for	signalized	and	unsignalized
inter	rsections c	as defir	ned in the la	test	editio	n of the	Hig	ihway Cap	acity	Manual.

	Signalized Intersection (Average Delay per Vehicle)	Unsignalized Intersection (Average Delay per Vehicle)
LOS A	<u><</u> 10	<u><</u> 10
LOS B	> 10 - <u><</u> 20	> 10 - <u><</u> 15
LOS C	> 20 - <u><</u> 35	> 15 - <u><</u> 25
los d	> 35 - <u><</u> 55	> 25 - <u><</u> 35
LOS E	> 55 - <u><</u> 80	> 35 - <u><</u> 50
LOS F	> 80	> 50

Analysis Traffic Volumes

Determination of the traffic impact associated with the Project is measured by comparing the incremental change in operational conditions during peak periods with and without site-related traffic. APPENDIX A provides exhibits summarizing the following:

- Existing traffic volumes during study peak hours
- Projected Background traffic volumes at the Site Buildout Year during study peak hours

- Projected Site-Generated traffic volumes during study peak hours
- Projected Background-plus-Site-Generated traffic volumes at the Site Buildout Year during study peak hours
- Projected five-year-after-buildout horizon traffic volumes, including Site-Generated traffic during study peak hours

A summary of the existing intersection/roadway geometry and traffic control devices is also graphically summarized in APPENDIX A.

Summary of Results

Intersection capacity analyses presented in this study were performed using the *Synchro* software package. **Table 5** and **Table 6** provide a summary of the peak period intersection operational conditions under the analysis conditions presented previously. Detailed software output is provided in APPENDIX D.

NOTE: Traffic signal operational parameters used in this analysis were based upon actual, existing traffic signal operational characteristics observed in the field at the time of traffic data collection.

SITE ACCESS EVALUATION

The City of Dallas *Street Design Manual* suggests various site access items should be evaluated for each project, where applicable. **Table 7** summarizes the findings and recommendations of these evaluations. Applicable supplemental information is provided in APPENDIX E.

Pedestrian Environment at Luther Lane-Westchester Drive Intersection

Preston Center is already a very pedestrian-oriented environment, especially during the lunch period. The addition of residential and hotel uses to the district will increase pedestrian activity at other times of the day. Generally, the district is very walkable and pedestrian-friendly, although design standards and user expectations continue to increase.

Where possible, minimizing the physical size of an intersection and reducing the walking distance of crosswalks are considered measures to incrementally improve safety. Although, no pedestrian accidents have been reported in the recent years according to the TxDOT Crash Records Information System (CRIS) database, it is generally recommended to seek opportunities to optimize pedestrian safety and capacity where it does not compromise traffic operations and maneuverability. The addition of ambient lighting to improve nighttime visibility for pedestrians is recommended.

As part of the proposed development, it is recommended to seek opportunities to enhance the streetscape and pedestrian environment on the southwest corner of the Luther Lane-Westchester Drive intersection.

Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)

		EXISTING CONDITIONS											BUILDOUT CONDITIONS						HORIZON CONDITIONS						
INTERSECTION			AM			PM			AM			PM			AM			PM			AM			PM	
		LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue
Douglas Avenue	Overall	Α	(8.4)		В	(15.3)		Α	(8.6)		В	(15.4)		Α	(9.5)		В	(15.3)		Α	(9.9)		В	(15.6)	
@ Luther Lane	NB	А	(3.4)	30 ft	А	(7.8)	84 ft	Α	(3.5)	32 ft	А	(8.3)	90 ft	А	(4.0)	35 ft	А	(8.3)	90 ft	А	(4.3)	38 ft	А	(9.0)	99 ft
	EB	С	(30.2)	48 ft	D	(46.2)	190 ft	С	(29.9)	49 ft	D	(45.3)	194 ft	С	(28.8)	47 ft	D	(44.6)	194 ft	С	(27.7)	48 ft	D	(43.3)	200 ft
	WB	С	(34.5)	137 ft	А	(8.7)	63 ft	С	(34.9)	140 ft	А	(8.5)	63 ft	С	(33.5)	158 ft	А	(8.5)	63 ft	С	(34.4)	168 ft	А	(8.7)	66 ft
	SB	Α	(4.0)	89 ft	А	(7.9)	54 ft	Α	(4.1)	94 ft	А	(8.4)	57 ft	А	(4.7)	103 ft	А	(8.7)	57 ft	А	(5.1)	114 ft	А	(9.5)	63 ft

NOTE: Traffic signal operational parameters used in this analysis were based upon actual traffic signal operational characteristics observed in the field at the time of data collection.

Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)

	TRAFFIC		EXIS	TING C	ONDI	TIONS			BACKG	ROUN		NDITIONS			BUII	DOUT	COND	ITIONS	
INTERSECTION	MANEUVER		AM			PM			AM			PM			AM			PM	
		LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue
Westchester Drive	NB	Α	(8.4)	0.3 ft	Α	(9.1)	0.3 ft	Α	(8.5)	0.3 ft	Α	(9.2)	0.4 ft	Α	(9.1)	0.6 ft	Α	(9.4)	0.4 f
@ Luther Lane	EB	А	(9.2)	0.7 ft	В	(11.4)	1.8 ft	Α	(9.3)	0.7 ft	В	(11.6)	1.9 ft	Α	(9.6)	0.8 ft	В	(12.2)	2.2 f
	SB	В	(10.3)	2.0 ft	В	(10.6)	1.3 ft	В	(10.4)	2.1 ft	В	(10.7)	1.4 ft	В	(10.8)	2.3 ft	В	(11.4)	1.9 f
Westchester Drive	NB	Α	(8.4)	0.4 ft	Α	(8.9)	0.8 ft	Α	(8.4)	0.4 ft	Α	(9.0)	0.8 ft	Α	(8.5)	0.4 ft	Α	(9.2)	0.8 f
@ Sherry Lane	EB	А	(8.3)	0.4 ft	Α	(9.6)	1.0 ft	Α	(8.4)	0.4 ft	Α	(9.7)	1.0 ft	Α	(8.5)	0.4 ft	Α	(9.8)	1.0 f
	WB	Α	(9.2)	1.2 ft	А	(9.0)	0.7 ft	Α	(9.3)	1.3 ft	Α	(9.1)	0.7 ft	Α	(9.5)	1.3 ft	Α	(9.3)	0.9 f
	SB	Α	(8.9)	0.7 ft	Α	(9.5)	0.9 ft	Α	(9.0)	0.7 ft	Α	(9.6)	1.0 ft	Α	(9.4)	0.9 ft	Α	(9.7)	1.0 f

<u>KEY</u>:

A, B, C, D, E, F = Level-of-Service

NB-, SB-, EB-, WB- = intersection approach AM = AM Peak Hour of Adjacent Street (##.#) = Average Seconds of Delay Per Vehicle -L, -T, -R = Left, Through, Right turning movement PM = PM Peak Hour of Adjacent Street

Table 7. Site Access Evaluation

EVALUATION	FINDING
Auxiliary (Deceleration) Lanes	Westchester Drive - due to low right-turn volumes, low-speed conditions, and urban setting, installation of a right-turn deceleration lane at site driveways is not recommended.
<u>Signage and Pavement Markings on Public</u> <u>Rights-of-Way</u>	Existing signs in the area are in good condition. The pedestrian crosswalks at the intersection of Luther Lane and Westchester Drive should be refreshed.
Historical Accident Analysis	A graphical summary of the study area Crash Record Information Service (CRIS) 3-year historical data is provided in Exhibit E-2.
<u>Driveway Sight Distances</u>	(RB Pass) - All building structure to comply with visiblity triangle requirements.
	(Matilda) - All building structure to comply with visiblity triangle requirements.
Pedestrian Safety at Unsignalized Crossing(s)	Luther Lane and Westchester Drive - This is a high-pedestrian volume intersection with all-way STOP control and crosswalks on all approaches.
	Sherry Lane and Westchester Drive - This is a low-pedestrian volume intersection with all-way STOP control and no marked crosswalks.
Number of Access Points	(RB Pass) - The project will have one driveway (new) on Westchesterd Drive. Based upon the projected site-generated traffic volumes, the proposed driveway is considered sufficient.
	(Matilda) - The project will have one primary driveway on Westchesterd Drive, generally located where the existing site driveway occurs, and a secondary driveway on the side alley. Based upon the projected site-generated traffic volumes, the proposed driveways are considered sufficient.
Driveway Spacing	See Appendix E1.
<u>Corner Clearances</u>	Building and hardscape design shall comply with required corner clearances.
<u>Median Openings</u>	N/A
<u>Shared Access</u>	N/A
<u>Stopping Sight Distance</u>	N/A
Traffic Signal or STOP Control Warrant Analysis	N/A
Driveway Improvements	(RB Pass) - All driveways will be newly constructed to meet applicable standards.
	(Matilda) - Existing driveways to be reconstructed to meet applicable standards.
Curb Return Radius	All curb returns to meet or exceed minimum City standards.

Traffic Operations Along Westchester Drive

Adjacent to the Matilda property, Westchester Drive is a two-lane roadway of approximately 27 feet of pavement width and no on-street parking. The narrow pavement width allows for generous pedestrian and landscape areas, which will be maintained in the proposed design.

The RB Pass property fronts two rights-of-way—Luther Lane and Westchester Drive. Luther Lane will remain relatively unchanged aside from other than addition of some street trees. Westchester Drive has a much wider right-of-way width than the Matilda property frontage as it includes the existing angled parking spaces on the west side and parallel parking spaces along the east side. The existing travel way is also two lanes wide, generally, although there east-side parallel parking lane transitions into a dedicated, northbound right-turn at the Luther Lane intersection.

In the proposed condition, each property will have a single driveway on Westchester Drive. RB Pass will replace the existing angled parking along the west side of Westchester with a wide pedestrian sidewalk that aligns with the Matilda property sidewalk and the existing crosswalk on Luther Lane. Both properties will install generous and consistent landscaping creating a significantly improved pedestrian experience compared to existing conditions. The new western curbline along Westchester will also generally align across both properties with a gentle taper that transitions into existing conditions in front of the Matilda property. By adjusting the curbline and removing the angled parking, vehicular traffic flow will also significantly improve.

SUMMARY OF FINDINGS AND RECOMMENDATIONS

NOTE: Recommendations presented in this report reflect the opinion of Pacheco Koch based solely upon technical analysis and professional judgment but are not intended to infer mandates or funding responsibility. Any proposed improvements in the public right-of-way are subject to approval of the responsible agency(-ies). Should the approving agency determine that any off-site improvements are required for approval of the Project, legal precedents apply with regard to jurisdiction and funding allocation.

The following findings and, if applicable, recommendations were based upon an analysis of the anticipated traffic impact generated by the proposed development scenario outlined in the **Project Description** section of this report.

FINDING: The proposed residential and hotel developments on the subject sites will replace existing commercial and medical office uses. Based upon industry-standard calculations, the trip generation rates on a per-squarefoot basis for hotel, and especially residential uses, are considerably lower than commercial and medical office uses. Hence, despite the significant difference in building square footage, the net increase in trip generation between the proposed uses and existing uses is relatively low.

FINDING: Existing traffic operations at the study area intersections of Luther Lane and Westchester Drive, Luther Lane and Douglas Avenue, and Westchester Drive and Sherry Lane are very good (efficient) during peak hour periods. With the addition of estimated background growth and

traffic generated by the proposed residential and hotel developments, the study area intersections are expected to experience very little net impact and will continue to operate at very good conditions. No operational mitigation measures are required.

FINDING: In the proposed condition, removal of the existing angled parking along Westchester Drive will eliminate associated parking maneuvers from the street and allow for an alignment of the western curbline. These changes will improve traffic flow along the street. The proposed modifications will also provide an aligned pedestrian corridor with consistent landscaping along both property frontages that will significantly improve the pedestrian environment.

 RECOMMENDATION: It is recommended that ambient lighting be added in the vicinity of the site to improve nighttime visibility of and for pedestrians.

FINDING: The RB Pass site can easily stage up to eight vehicles on site in the drop-off area of the motor court without affecting internal traffic flow and another seven vehicles along the internal drive aisle during special (hotel) event conditions, if required. During hotel events valet staffing will be increased accordingly.

RECOMMENDATION: It is also recommended that hotel management develop contingency operational plans if undue impact to the local street system occurs. Such traffic management strategies may include: employment of off-duty police officers at key locations, advanced coordination with guests regarding traffic routes, parking, etc.

END OF MEMO

APPENDIX A. Traffic Volumes Exhibits

Appendix A1 - Roadway Geometry

Appendix A2 - Existing AM

Appendix A3 - Existing PM

Appendix A4 - Background AM

Appendix A5 - Background PM

Appendix A8 - Buildout AM

Appendix A9 - Buildout PM

Appendix A10 - Horizon AM

Appendix A11 - Horizon PM

APPENDIX B. Detailed Traffic Volume Data

Intersection 1	Turning Movement Counts			NORTI	H LEG			EAS	T LEG			SOUT	H LEG				WEST	LEG	
			South	bound A	Approa	ch on	We	tbound	Approa	ich on	Nort	nbound	Approa	ach on	I	Eastbo	ound Ap	oproad	h on
			0	ouglas	Avenu	e		Luthe	er Lane			Douglas	Avenu	e			Luther	Lane	
			Ve	hicles		<u>Peds</u>	<u>v</u>	<u>ehicles</u>		<u>Peds</u>	Ve	<u>hicles</u>		Peds		Vehi	cles		Peds
		START END	UL	Т	R	CCW CW	UL	Т	R	CCW CW	UL	Т	R	CCW CW	U	L	Т	R	CCW CW
City:	Dallas	7:00 AM 7:15 AM	7	96	22		5	3	15		4	25	4			3	0	1	
State:	Texas	7:15 AM 7:30 AM	13	132	21		4	1	11		0	25	5			2	0	2	
Day:	Wednesday	7:30 AM 7:45 AM	22	154	19		10	6	17		0	85	9			4	5	2	
Date:	11-Mar	7:45 AM 8:00 AM	15	166	23		12	8	17		5	84	11			5	3	4	
Year:	2020	8:00 AM 8:15 AM	21	195	28		7	11	31		6	79	11			5	4	4	
Data Collector:	Camera	8:15 AM 8:30 AM	23	214	24		13	10	21		10	80	8			8	2	4	
Data Source:	CJ Hensch & Associates, Inc.	8:30 AM 8:45 AM	21	207	37		12	8	39		8	69	9			2	3	1	
Traffic Control:	Traffic Signal	8:45 AM 9:00 AM	27	188	38		11	7	35		11	72	13			11	4	3	
Observations:]				<u> </u>				<u> </u>					
		4:30 PM 4:45 PM	15	/4	6		4	5	37		5	114	13			31	18	11	
		4:45 PM 5:00 PM	26	88	15		4	5	35		6	111	18			34	17	15	
		5:00 PM 5:15 PM	2/	92 78	11		8	5	43 25		5	157	10 16			52 29	12 9	20 12	
		5:30 PM 5:45 PM	17	66	10		3	7	30		2	115	9			42	18	16	
		5:45 PM 6:00 PM	21	78	6		9	, 7	35		4	97	24			33	12	19	
		6:00 PM 6:15 PM	22	53	8		5	5	36		6	93	13			24	8	10	
		6:15 PM 6:30 PM	25	71	10		7	7	26		4	77	13			14	8	10	
													-				-		
Intersec	tion PHF: 0.99	Intersection PHV:	0 92	804	127		0 43	36	126		0 35	300	41		0	26	13	12	
F F	Peak Hour 8:00 AM - 9:00 AM	PHF:	0.85	0.94	0.84		0.8	8 0.82	0.81		0.80	0.94	0.79			0.59	0.81	0.75	
≚ Study A	Area PHF: 0.99	Study Area PHV:	0 92	804	127		0 43	36	126		0 35	300	41		0	26	13	12	
< Po		Intersection PLV/	0.85	0.94	U.84		0.8	3 U.82	140		0.80	U.94	U./9	<u> </u>	0	166	U.01	0.75 60	
E Intersec	2eak Hour 4:45 PM - 5:45 PM	PHF	0 92	324 () 88	40 0.67		0 24	22 7 0.70	143 0 83		0 10	0.81	0.82		U	0.80	0.76	0.66	
Study A	Area PHF: 0.83	Study Area PHV:	0 92	324	40		0 24	22	143		0 16	506	59		0	166	55	69	
≥ Pe	eak Hour: 4:45 PM - 5:45 PM	PHF:	0.85	0.88	0.67		0.6	7 0.79	0.83		0.67	0.81	0.82			0.80	0.76	0.66	
							•			•	· · · · · ·				•				

Pacheco Koch

PK# 2386-20.065A

Douglas Avenue at Luther Lane

Intersec	tion Turning Movement Counts			NORTH L	G		EAST LEG			SOUTH LE	G		WEST LEG	
			South	oound App	roach on	West	bound Appro	ach on	North	bound Appr	oach on	Eastb	ound Appro	ach on
			W	estchester	Drive		Sherry Lane		W	estchester [Drive		Sherry Lane	
			Ver	nicles	Peds	Vel	nicles	<u>Peds</u>	Ve	hicles	Peds	Vel	nicles	<u>Peds</u>
		START END	UL	TI	CCW CW	UL	T R	CCW CW	UL	T R	CCW CW	UL	T R	CCW CW
City:	Dallas	7:00 AM 7:15 AM	0	17 2	!	2	11 11		0	3 2		3	4 2	
State:	Texas	7:15 AM 7:30 AM	8	14	i	4	7 6		0	93		2	5 2	
Day:	Wednesday	7:30 AM 7:45 AM	4	14		4	12 13		2	18 5		2	6 2	
Date:	11-Mar	7:45 AM 8:00 AM	2	23 (;	6	25 11		2	15 10		3	11 4	
Year:	2020	8:00 AM 8:15 AM	5	25 0	1	8	31 20		3	11 3		7	11 5	
Data Coll	ector: Camera	8:15 AM 8:30 AM	8	22		6	27 21		5	10 10		3	12 9	
Data Sou	Irce: CJ Hensch & Associates, Inc.	8:30 AM 8:45 AM	12	20 0	;	8	23 24		1	15 6		3	10 3	
Traffic Co	ontrol: All-Way Stop	8:45 AM 9:00 AM	6	15 8	3	4	24 21		2	12 2		5	11 4	
Observat	ions:													
		4:30 PM 4:45 PM	8	15 0	i	2	10 20		0	16 15		1	27 2	
		4:45 PM 5:00 PM	18	21 1	0	3	16 13		3	21 13		7	35 2	
		5:00 PM 5:15 PM	9	20 1	1	1	26 12		4	12 20		9	41 6	
		5:15 PM 5:30 PM	20	14 1	1	2	15 15		2	18 19		3	25 2	
		5:30 PM 5:45 PM	11	18 1		/	10 15		1	13 1/		6	30 1	
		5:45 PM 6:00 PM	10	24		5	13 14		1	20 10		3	20 2	
		6:00 PM 6:15 PM	1/	1/ 1	1	1	20 17		0	5 11		2	25 3	
		6:15 PM 6:30 PM	8	13 0)	1	13 18		1	64		8	21 0	
II on	ntersection PHF: 0.96	Intersection PHV:	0 27	90 1	9	0 28	106 76		0 11	51 29		0 16	44 21	
ak H	Peak Hour 7:45 AM - 8:45 AM	PHF:	0.56	0.90 0.	79	0.88	0.85 0.79		0.55	0.85 0.75	3	0.57	0.92 0.58	
A Pei	Study Area PHF: 0.95	Study Area PHV:	0 31	82 2	1	0 26	105 86		0 11	48 21		0 18	44 21	
r An	Peak Hour: 8:00 AM - 9:00 AM	PHF:	0.65	0.82 0.	56	0.81	0.85 0.90)	0.55	0.80 0.5	3	0.64	0.92 0.5	
In Hou	ntersection PHF: 0.89	Intersection PHV:	0 58	73 3	3	0 13	67 55		0 10	64 69		0 25	131 11	
eak	Реак поиг 4:45 РМ - 5:45 РМ	PHF: Study Area DUV	0.73	72 0.	· 0	0.46	0.64 0.92		0.63	0.76 0.8)	0.69	0.80 0.46	
id S Į	Peak Hour: 4:45 DM 5:45 DM	Suuy Area PHV:	0 50	/3 3 087 0	5	0 13	064 00	,	0 10	04 69	6	0 25	131 11 080 044	
٩.	r can nuui. 14:43 PW - 3:43 PW	PAF:	0.73	u.o/ U.		0.46	0.04 0.92	• 1	0.63	0.10 0.8	v	0.69	0.00 0.4	

Pacheco Koch

PK# 2386-20.065A

Westchester Drive at Sherry Lane

Intersection	Turning Movement Counts			NORTH	LEG						SC	DUTH L	EG				WEST	LEG	
			South	bound A	pproa	ch on				N	orthbou	und App	oroad	ch on		Eastbo	ound Ap	oproad	h on
			W	'estchest	er Dri	ve					West	chester	Driv	/e			Luther	Lane	
			Ve	<u>hicles</u>		Peds		 			Vehicl	<u>es</u>		Peds		Veh	icles		Peds
		START END	UL	Т	R	CCM CM				U	L	Т	R	CCM CM	U	L	Т	R	CCM CM
City:	Dallas	7:00 AM 7:15 AM	14	22	22						7	-	5			-	8	2	
State:	Texas	7:15 AM 7:30 AM	30	28	15						5	-	5			-	12	4	
Day:	Wednesday	7:30 AM 7:45 AM	21	25	29						10		17			-	19	2	
Date:	11-Mar	7:45 AM 8:00 AM	21	32	30						14		18			-	14	11	
Year:	2020	8:00 AM 8:15 AM	28	42	39						8	- 1	17			-	18	7	
Data Collector	Camera	8:15 AM 8:30 AM	31	25	44						8	- 1	2			-	24	12	
Data Source:	CJ Hensch & Associates, Inc.	8:30 AM 8:45 AM	30	34	43						17	- 1	13			-	18	11	
Traffic Control:	All-Way Stop	8:45 AM 9:00 AM	48	29	42						16	-	9			-	25	7	
Observations:																			
		4:30 PM 4:45 PM	24	14	34						18	- '	18			-	47	11	
		4:45 PM 5:00 PM	40	19	22						20	- 2	21			-	56	16	
		5:00 PM 5:15 PM	46	24	32						15	- 2	22			-	66	13	
		5:15 PM 5:30 PM	35	29	29					1	17	- 2	22			-	39	8	
		5:30 PM 5:45 PM	42	25	26						13	- 1	6			-	45	6	
		5:45 PM 6:00 PM	65	27	26						17	- 2	23			-	54	10	
		6:00 PM 6:15 PM	52	27	30						14	-	9			-	37	9	
		6:15 PM 6:30 PM	49	22	36		-			-	7	- 2	22			-	36	7	
Interseo	Ction PHF: 0.93	Intersection PHV:	0 137	130	168					0	49	0 5	51		0	0	85	37	
		PHF: Study Area DUV	0./1	0.77	0.95						1.72 0	0.00 0.	/5		· ·	0.00	0.85	0.//	
a Study / ≷ P	eak Hour: 8:00 AM - 9:00 AM	Study Area PHV: PHF:	0 137	130 0.77	168 0.95						49).72 0	0.00	51 .75		0	0.00	85 0.85	37 0.77	
a Intersec	tion PHF: 0.89	Intersection PHV:	0 188	105	113					0	62	0 8	33		0	0	204	37	
H A	Peak Hour 5:00 PM - 6:00 PM	PHF:	0.72	0.91	0.88					().91 0	0.00 0.	90			0.00	0.77	0.71	
ë Study/ ≥ D	Area PHF: 0.88	Study Area PHV:	0 163	97	109					0	65	3 0	31		0	0	206	43	
	eak nour: 4:45 PM - 5:45 PM	PHF:	0.89	U.84	0.85		1	-			.61 0	.00 0.	92		<u> </u>	0.00	0.78	0.67	
Pach	eco Koch	PK# 2386-20.06	5A						West	:che	este	er l	Dr	rive a	at l	Lut	:he	r L	.ane

Interse	tion Turni	ng Movement Counts					NORTI	H LEG							SOUT	H LEG				WEST	LEG	
					S	Southb	ound A	Approa	ach on					North	bound	Approa	ach on		Eastbo	ound Ap	oproad	h on
						We	stches	ter Dri	ive					W	estches	ster Dri	ve		1	Luther	Lane	
						Vehi	cles		Peds					Vel	hicles		Peds		Vehi	cles		Peds
			START	END	U	L	Т	R	CCW CW				U	L	Т	R	CCW CW	U	L	Т	R	CCW CW
City:		Dallas	11:00 AM	11:15 AM		26	25	27						9	-	11			-	31	7	
State:		Texas	11:15 AM	11:30 AM		51	21	38						11	-	21			-	37	17	
Day:		Wednesday	11:30 AM	11:45 AM		60	19	33						10	-	26			-	42	15	
Date:		11-Mar	11:45 AM	12:00 PM		68	19	36						13	-	19			-	55	18	
Year:		2020	12:00 PM	12:15 PM		70	28	34						19	-	21			-	49	21	
Data Co	llector:	Camera	12:15 PM	12:30 PM		60	19	42						7	-	20			-	46	14	
Data So	urce:	CJ Hensch & Associates, Inc.	12:30 PM	12:45 PM		58	25	42						14	-	28			-	28	11	
Traffic C	ontrol:	All-Way Stop	12:45 PM	1:00 PM		57	30	54						12	-	18			-	31	5	
Observa	tions:																					
										1								1				
× ,	nterrestien DI	15. 0.04	Int	a officer DLD4	0	050	04	454					0	50	0	00		0	0	470	64	
L Peal	Deals U	IT: U.91	Interse	ecuon PHV: DUC	U	256	91	154		1			U	53	0.00	88		U	0	1/8	64 0.76	
Hour	Peak Ho	UT 11.40 AM - 12:40 PM	Ct. du	Area DUV	0	0.91	0.81	0.92						0.70	0.00	0.79		-	0.00	179	0.70	
AIDC +	Dudy Area Pr Deak Ho	ur: 11:45 AM - 12:45 PM	Study	Area PHV: PHC	U	256 ∩ 91	91 0.81	154		1			0	53 0.70	0 00	٥٥ 0 70		U	0 00	1/8	64 0.76	
-	reak NU	ui. 11.45 AWI * 12.45 FWI		FHF:	I	0.91	0.01	0.92		1				0.70	0.00	0.79	•		0.00	0.01	0.70	
	achec	Noch	PK#	2386-20.06	5A						- V	vest	ch	est	ter	D	rive a	at L	ut	ne	r L	ane

ROADWAY: Douglas Avenue

LOCATION: Between Sherry Lane and Luther Lane

DAY: Wednesday

DATE: 11-Mar

YEAR: 2020

SOURCE: CJ Hensch & Associates, Inc.

24-HOUR, BI-DIRECTIONAL VOLUME

11,816

(WEEKDAY)

Douglas Avenue

		North	bound			South	bound			Totals	
START TIME	0:00	0:15	0:30	0:45	0:00	0:15	0:30	0:45	NB	SB	Bi-Direct.
12:00 AM	1	1	0	0	2	2	1	0	2	5	7
1:00 AM	0	0	0	1	1	1	1	4	1	7	8
2:00 AM	4	0	0	1	0	0	2	0	5	2	7
3:00 AM	0	0	0	0	0	0	0	2	0	2	2
4:00 AM	0	0	0	0	0	0	0	4	0	4	4
5:00 AM	4	2	1	12	1	6	12	36	19	55	74
6:00 AM	7	11	13	19	22	28	68	92	50	210	260
7:00 AM	32	29	89	97	100	133	164	177	247	574	821
8:00 AM	94	102	82	97	201	226	217	201	375	845	1220
9:00 AM	92	95	67	72	156	128	116	135	326	535	861
10:00 AM	73	64	79	63	116	108	94	110	279	428	707
11:00 AM	80	90	104	118	106	130	111	141	392	488	880
12:00 PM	118	109	93	90	137	95	137	154	410	523	933
1:00 PM	114	104	100	72	118	123	108	144	390	493	883
2:00 PM	74	90	112	118	114	107	99	110	394	430	824
3:00 PM	108	112	150	148	96	113	116	101	518	426	944
4:00 PM	124	112	138	133	90	83	92	106	507	371	878
5:00 PM	173	134	138	122	121	98	86	104	567	409	976
6:00 PM	112	86	73	43	68	88	54	62	314	272	586
7:00 PM	62	50	43	25	58	49	36	36	180	179	359
8:00 PM	32	30	41	20	36	27	40	28	123	131	254
9:00 PM	21	17	17	13	16	36	43	23	68	118	186
10:00 PM	28	16	10	12	32	9	7	6	66	54	120
11:00 PM	1	3	1	3	4	9	1	0	8	14	22

995
,220
1,816
Direct.
Dii

24-Hour Total:
(Bi-Direct.) AM Peak Hour Total:
(Bi-Direct.) PM Peak Hour Total:
Highest By Direction (NB):
Highest By Direction (SB):

8:00 AM 9:00 AM 4:30 PM 5:30 PM 4:30 PM 5:30 PM

8:00 AM 9:00 AM

ROADWAY: Luther Lane

LOCATION: Between Douglas Avenue and Westchester Drive

DAY: Wednesday

DATE: 11-Mar

YEAR: 2020

SOURCE: CJ Hensch & Associates, Inc.

		Eastb	ound			West	bound			Totals	
START TIME	0:00	0:15	0:30	0:45	0:00	0:15	0:30	0:45	EB	WB	Bi-Direct.
12:00 AM	0	1	1	3	0	0	0	0	5	0	5
1:00 AM	1	0	0	0	1	1	0	1	1	3	4
2:00 AM	0	0	0	0	1	0	1	0	0	2	2
3:00 AM	0	0	0	1	0	0	0	0	1	0	1
4:00 AM	0	1	1	2	3	1	0	1	4	5	9
5:00 AM	0	2	2	9	1	2	4	3	13	10	23
6:00 AM	6	11	8	18	8	4	7	12	43	31	74
7:00 AM	13	16	35	31	18	16	30	33	95	97	192
8:00 AM	27	34	30	32	49	46	55	48	123	198	321
9:00 AM	33	56	30	43	39	45	37	26	162	147	309
10:00 AM	40	26	22	44	30	26	28	38	132	122	254
11:00 AM	41	62	59	83	37	52	42	53	245	184	429
12:00 PM	68	54	44	32	58	53	66	67	198	244	442
1:00 PM	49	49	48	33	54	66	54	55	179	229	408
2:00 PM	36	31	43	53	36	43	38	44	163	161	324
3:00 PM	33	40	34	59	36	45	47	48	166	176	342
4:00 PM	57	36	42	58	47	49	45	46	193	187	380
5:00 PM	56	47	47	53	53	46	41	49	203	189	392
6:00 PM	45	44	32	29	46	40	37	41	150	164	314
7:00 PM	24	20	13	17	33	35	27	30	74	125	199
8:00 PM	12	17	13	8	25	15	31	13	50	84	134
9:00 PM	5	2	8	9	6	12	12	4	24	34	58
10:00 PM	10	0	2	2	9	4	4	2	14	19	33
11:00 PM	0	0	2	0	2	1	0	0	2	3	5

EB	WB	Bi-Direct.
2,240	2,414	4,654
245	184	429
198	244	442
272		
	253	

24-HOUR, BI-DIRECTIONAL VOLUME

4,654

(WEEKDAY)

24-Hour Total: (Bi-Direct.) AM Peak Hour Total: (Bi-Direct.) PM Peak Hour Total: Highest By Direction (EB): Highest By Direction (WB):

 11:00 AM
 12:00 PM

 12:00 PM
 1:00 PM

 11:15 AM
 12:15 PM

 12:30 PM
 1:30 PM

ROADWAY: Sherry Lane

LOCATION: Between Douglas Avenue and Westchester Drive

DAY: Wednesday

DATE: 11-Mar

YEAR: 2020

SOURCE: CJ Hensch & Associates, Inc.

		Eastb	ound			West	bound			Totals	
START TIME	0:00	0:15	0:30	0:45	0:00	0:15	0:30	0:45	EB	WB	Bi-Direct.
12:00 AM	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	1	0	0	0	0	0	1	1	1	2
2:00 AM	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	1	0	0	0	0	1	0	0	1	1	2
5:00 AM	0	2	2	2	0	0	0	0	6	0	6
6:00 AM	1	5	4	2	3	3	8	7	12	21	33
7:00 AM	6	8	10	18	12	12	14	32	42	70	112
8:00 AM	23	21	10	20	42	34	32	31	74	139	213
9:00 AM	19	22	30	26	35	37	32	39	97	143	240
10:00 AM	28	26	22	22	30	23	25	25	98	103	201
11:00 AM	27	42	39	31	29	34	23	45	139	131	270
12:00 PM	25	33	25	28	30	39	35	33	111	137	248
1:00 PM	35	46	24	38	39	39	32	44	143	154	297
2:00 PM	39	38	33	23	28	27	26	36	133	117	250
3:00 PM	30	35	28	23	29	22	41	36	116	128	244
4:00 PM	27	24	26	41	27	28	17	31	118	103	221
5:00 PM	54	26	37	33	42	28	14	24	150	108	258
6:00 PM	30	30	25	23	31	19	14	8	108	72	180
7:00 PM	16	12	12	9	15	11	5	4	49	35	84
8:00 PM	14	6	4	3	9	5	9	3	27	26	53
9:00 PM	3	3	2	7	7	4	2	1	15	14	29
10:00 PM	5	1	4	0	4	0	0	2	10	6	16
11:00 PM	0	2	1	0	0	0	0	0	3	0	3

EB	WB	Bi-Direct.
1,453	1,509	2,962
139	131	270
143	154	297
158		
\sim	154	\sim

24-HOUR, BI-DIRECTIONAL VOLUME

2,962

-(WEEKDAY)

24-Hour Total: (Bi-Direct.) AM Peak Hour Total: (Bi-Direct.) PM Peak Hour Total: Highest By Direction (EB): Highest By Direction (WB):

 11:00 AM
 12:00 PM

 1:00 PM
 2:00 PM

 4:45 PM
 5:45 PM

1:00 PM 2:00 PM

ROADWAY: Westchester Drive

LOCATION: Between Sherry Lane and Luther Lane

DAY: Wednesday

- DATE: 11-Mar
- YEAR: 2020

SOURCE: CJ Hensch & Associates, Inc.

24-HOUR, BI-DIRECTIONAL VOLUME

3,295 (WEEKDAY)

Westchester Drive

		Northb	ound			South	oound		Totals			
START TIME	0:00	0:15	0:30	0:45	0:00	0:15	0:30	0:45	NB	SB	Bi-Direct.	
12:00 AM	0	2	0	1	0	0	0	0	3	0	3	
1:00 AM	0	0	0	1	0	0	0	0	1	0	1	
2:00 AM	1	0	0	0	0	0	0	0	1	0	1	
3:00 AM	0	0	0	0	0	1	0	0	0	1	1	
4:00 AM	2	1	1	1	3	1	1	1	5	6	11	
5:00 AM	2	5	4	2	2	1	5	4	13	12	25	
6:00 AM	1	11	3	8	6	15	24	23	23	68	91	
7:00 AM	12	13	31	29	23	29	29	37	85	118	203	
8:00 AM	29	33	31	22	48	39	48	32	115	167	282	
9:00 AM	23	33	28	39	31	39	31	40	123	141	264	
10:00 AM	21	20	18	27	24	33	27	40	86	124	210	
11:00 AM	20	35	20	36	34	33	19	35	111	121	232	
12:00 PM	24	28	34	23	23	38	35	24	109	120	229	
1:00 PM	28	33	40	21	39	34	44	33	122	150	272	
2:00 PM	29	27	33	43	27	30	44	35	132	136	268	
3:00 PM	27	31	30	37	27	36	23	30	125	116	241	
4:00 PM	42	24	30	23	35	26	29	22	119	112	231	
5:00 PM	29	30	29	36	19	40	30	31	124	120	244	
6:00 PM	20	13	21	26	45	24	26	19	80	114	194	
7:00 PM	15	15	20	14	21	20	19	15	64	75	139	
8:00 PM	12	12	15	4	17	11	23	3	43	54	97	
9:00 PM	4	3	3	2	9	11	4	1	12	25	37	
10:00 PM	2	2	1	1	1	1	3	1	6	6	12	
11:00 PM	2	2	0	1	2	0	0	0	5	2	7	

INB	SB	BI-Direct.
1,507	1,788	3,295
122	172	294
134	142	276
140		
	172	

24-Hour Total:
(Bi-Direct.) AM Peak Hour Total:
(Bi-Direct.) PM Peak Hour Total:
Highest By Direction (NB):
Highest By Direction (SB):

- 7:45 AM 8:45 AM 3:30 PM 2:30 PM 4:15 PM 3:15 PM
- 7:45 AM 8:45 AM

APPENDIX C. Site-Generated Traffic Supplement

APPENDIX C1

Site Generated Trip Distribution - Inbound

Site Generated Trip Distribution - Outbound

Preston Center Development, Dallas, Texas

PK 2386-20.065A (AJV: 06/16/20)

			DAILY	AM PEA	k hour o	F ADJ ST	PM PEA	k hour o	F ADJ ST	
				TOTAL	IN	OUT	TOTAL	IN	OUT	
RB Pass 6	030 Luther Lane									
Existing	38764 SF GLA 100% leased	820 - SHOPPING CENTER (GEN URBAN/SUBURBAN) The Gem (Juice Bar) - 6030 Luther Lane #160 J Grace (Salon) - 6030 Luther Lane #150 Cedars Express (Restaurant) - 6030 Luther Lane #140 Urban Caphe (Restaurant) - 6030 Luther Lane #130 Cowboy Up (Salon) - 6030 Luther Lane #120 Go Fish Poke (Restaurant) - 6030 Luther Lane #110 Hopdoddy Burger (Restaurant) - 6030 Luther Lane #100 Larry North Fitness - 6030 Luther Lane #180	1463	36	22	14	148	71	77	
		SUBTOTAL	1463	36	22	14	148	71	77	
50% V	VALK	WALK TOTAL	732	18	11	7	74	36	39	
		NET TOTAL	731	18	11	7	74	35	38	
Proposed	225 Rooms	310- HOTEL (GEN LIRBAN/SUBLIRBAN)	1881	106	63	43	135	69	66	
rioposeu	63 DU	222 - MULTIFAMILY HOUSING (HIGH-RISE) [GENERAL UR	280	20	5	45 15	23	14	9	
	3500 SF	RESTAURANT (INC. IN HOTEL)	200	20	5	10	20		5	
	2500 SF	932 - HIGH-TURNOVER RESTAURANT	280	25	14	11	24	9	15	
	2500 SF	820 - SHOPPING CENTER	94	2	1	1	10	5	5	
50% V	VALK		187	14	8	6	17	7	10	
		SUBTOTAL	2348	140	76	64	175	90	85	at Driveway 1
		NET CHANGE	1617	122	65	57	101	55	47	
<u>Matilda 8</u>	215 Westchester D	Drive								
Existing	42077 SF GLA	720 - MEDICAL-DENTAL OFFICE BLG (GEN URBAN/SUBUF	1464	117	91	26	146	41	105	
	82% leased	NET TOTAL	1200	96	75	21	120	34	86	
Proposed	270 DU	222 - MULTIFAMILY HOUSING (HIGH-RISE) [GENERAL U	1202	84	20	64	97	59	38	at Driveway 2
		NET CHANGE	2	-12	-55	43	-23	25	-48	
		EXISTING USES (BOTH PROPERTIES)	1931	114	86	28	194	69	124	
		PROPOSED USES (BOTH PROPERTIES)	3550	224	96	128	272	149	123	
NET DIFFERI	ENCE	(PROPOSED - EXISTING)	1619	110	10	100	78	80	-1	STUDY AREA INTERSECTIONS

APPENDIX D. Detailed Intersection Capacity Analysis Results

2386-20.065A												Plan: AM		
	۶	+	*	4	Ļ	*	•	t	1	1	Ļ	~		
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB		
ane Configurations		1	1		\$		۲	4 4 1		ľ	4 1 1			
Traffic Volume (vph)	26	13	12	43	36	126	35	300	41	92	804	12		
uture Volume (vph)	26	13	12	43	36	126	35	300	41	92	804	12		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9		
Adj. Flow (vph)	28	14	13	47	39	137	38	326	45	100	874	13		
Shared Lane Traffic (%)														
ane Group Flow (vph)	0	42	13	0	223	0	38	371	0	100	1012			
Furn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA			
Protected Phases		4			8			2			6			
Permitted Phases	4		4	8			2			6				
Detector Phase	4	4	4	8	8		2	2		6	6			
Switch Phase														
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0			
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5		22.5	22.5		22.5	22.5			
Fotal Split (s)	30.0	30.0	30.0	30.0	30.0		60.0	60.0		60.0	60.0			
Fotal Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		66.7%	66.7%		66.7%	66.7%			
rellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0			
ost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0			
Total Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5			
_ead/Lag														
ead-Lag Optimize?														
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max			
Act Effct Green (s)		13.3	13.3		13.3		67.7	67.7		67.7	67.7			
Actuated g/C Ratio		0.15	0.15		0.15		0.75	0.75		0.75	0.75			
//c Ratio		0.27	0.05		0.72		0.10	0.10		0.14	0.27			
Control Delay		36.1	11.1		34.5		5.0	3.2		4.6	3.9			
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0			
Total Delay		36.1	11.1		34.5		5.0	3.2		4.6	3.9			
.OS		D	В		С		A	A		A	A			
Approach Delay		30.2			34.5			3.4			4.0			
Approach LOS		С			С			A			A			
Queue Length 50th (ft)		22	0		72		5	14		13	48			
Queue Length 95th (ft)		48	13		137		18	30		37	89			
nternal Link Dist (ft)		296			526			275			240			
Furn Bay Length (ft)							100			140				
Base Capacity (vph)		295	461		508		372	3766		732	3763			
Starvation Cap Reductn		0	0		0		0	0		0	0			
Spillback Cap Reductn		0	0		0		0	0		0	0			
Storage Cap Reductn		0	0		0		0	0		0	0			
Reduced v/c Ratio		0.14	0.03		0.44		0.10	0.10		0.14	0.27			
		0.14	0.00		0.11		0.10	0.10		v. 14	V.L1	_		
ntersection Summary														
Lycie Length: 90														
Actuated Cycle Length: 90	-		LC.ODT	04-1-1	0									
Offset: 0 (0%), Referenced to Natural Cycle: 45	phase 2:	NBTL and	d 6:SBTL	, Start of	Green									
Control Type: Actuated-Coon	dinated													
/laximum v/c Ratio: 0.72														

1: Douglas Avenue & Luther Lane 2386-20.065A		Existing Timing Plan: AM
Intersection Signal Delay: 8.4	Intersection LOS: A	
Intersection Capacity Utilization 52.5%	ICU Level of Service A	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

∫	
60 s	30 s
Ø6 (R)	₹ Ø8
60 s	30 s

03/26/2020 AJV

2: Westchester Drive & Luther Lane 2386-20.065A

Existing Timing Plan: AM

Synchro 10 Report

Page 1

Intersection												
Intersection Delay, s/veh	9.8											
Intersection LOS	А											
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR

Lane Configurations		4Î					۲		1	٦	•	
Traffic Vol, veh/h	0	85	37	0	0	0	49	0	51	137	130	168
Future Vol, veh/h	0	85	37	0	0	0	49	0	51	137	130	168
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	92	40	0	0	0	53	0	55	149	141	183
Number of Lanes	0	1	0	0	0	0	1	0	1	1	1	0
Approach		EB					NB			SB		1
Opposing Approach							SB			NB		
Opposing Lanes		0					2			2		
Conflicting Approach Left		SB					EB					
Conflicting Lanes Left		2					1			0		
Conflicting Approach Right		NB								EB		
Conflicting Lanes Right		2					0			1		
HCM Control Delay		9.2					8.4			10.3		
HCM LOS		А					А			В		

Lane	NBLn1	NBLn2	EBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	0%	70%	0%	44%
Vol Right, %	0%	100%	30%	0%	56%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	49	51	122	137	298
LT Vol	49	0	0	137	0
Through Vol	0	0	85	0	130
RT Vol	0	51	37	0	168
Lane Flow Rate	53	55	133	149	324
Geometry Grp	7	7	2	7	7
Degree of Util (X)	0.086	0.071	0.184	0.227	0.412
Departure Headway (Hd)	5.817	4.608	4.991	5.478	4.579
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	615	774	717	655	787
Service Time	3.562	2.352	3.028	3.211	2.311
HCM Lane V/C Ratio	0.086	0.071	0.185	0.227	0.412
HCM Control Delay	9.1	7.7	9.2	9.8	10.5
HCM Lane LOS	А	А	А	А	В
HCM 95th-tile Q	0.3	0.2	0.7	0.9	2

3: Westchester Drive & Sherry Lane 2386-20.065A

Existing Timing Plan: AM

Intersection												
Intersection Delay, s/veh	8.9											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	18	44	21	26	105	86	11	48	21	31	82	21
Future Vol, veh/h	18	44	21	26	105	86	11	48	21	31	82	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	20	48	23	28	114	93	12	52	23	34	89	23
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.3			9.2			8.4			8.9		
HCM LOS	Α			A			Α			А		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		14%	22%	12%	23%							
Vol Thru, %		60%	53%	48%	61%							
Vol Right, %		26%	25%	40%	16%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		80	83	217	134							
LT Vol		11	18	26	31							
Through Vol		48	44	105	82							
RT Vol		21	21	86	21							
Lane Flow Rate		87	90	236	146							
Geometry Grn		1	1	1	1							

Geometry Grp Degree of Util (X) Departure Headway (Hd) 0.114 0.117 0.287 0.191 4.727 4.651 4.384 4.733 Convergence, Y/N Yes Yes Yes Yes Сар 756 769 818 756 Service Time HCM Lane V/C Ratio 2.771 2.691 2.417 2.773 0.115 0.117 0.289 0.193 HCM Control Delay 8.4 8.3 9.2 8.9 HCM Lane LOS Α Α Α Α HCM 95th-tile Q 0.4 0.4 1.2 0.7

03/26/2020 AJV Synchro 10 Report Page 2

03/26/2020

AJV

	۶	-	\mathbf{r}	4	-	*	1	1	۲	1	Ŧ	~
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		•	1		\$		1	4 4 16		ľ	4 4 12	
Traffic Volume (vph)	166	55	69	24	22	143	16	506	59	92	324	40
uture Volume (vph)	166	55	69	24	22	143	16	506	59	92	324	40
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	180	60	75	26	24	155	17	550	64	100	352	43
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	240	75	0	205	0	17	614	0	100	395	0
urn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
ermitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
/inimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
/linimum Split (s)	22.5	22.5	22.5	22.5	22.5		22.5	22.5		22.5	22.5	
otal Split (s)	49.0	49.0	49.0	49.0	49.0		41.0	41.0		41.0	41.0	
otal Split (%)	54.4%	54.4%	54.4%	54.4%	54.4%		45.6%	45.6%		45.6%	45.6%	
ellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
ost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
ead/Lag		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
ead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		23.9	23.9		23.9		57.1	57.1		57.1	57.1	
ctuated g/C Ratio		0.27	0.27		0.27		0.63	0.63		0.63	0.63	
/c Ratio		0.87	0.16		0.39		0.03	0.19		0.21	0.12	
Control Delay		58.9	5.8		8.7		9.1	7.8		10.6	7.3	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
otal Delay		58.9	5.8		8.7		9.1	7.8		10.6	7.3	
.US		E 40.0	A		A		A	A		В	A	
Approach Delay		40.2			8./			1.8			7.9	
Approach LOS		U			A			A			A	
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to Vatural Cycle: 45	phase 2:	NBTL and	d 6:SBTL	Start of (Green							
Control Type: Actuated-Coor	dinated											
/laximum v/c Ratio: 0.87												
ntersection Signal Delay: 15	.3			In	tersection	LOS: B						
ntersection Capacity Utilizat	ion 54.6%			IC	CU Level o	f Service	A					
nalysis Period (min) 15												
Splits and Phases: 1: Dou	glas Aven	ue & Luth	er Lane									
A and a second					404							
1 Ø2 (R)												_
1 Ø2 (R) 11 s				49	s							

03/30/2020 AJV

2: Westchester Drive & Luther Lane 2386-20.065A

Existing Timing Plan: PM

Intersection												
Intersection Delay, s/veh	10.6											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR

Lane Configurations		12					<u>۲</u>		1	<u>۳</u>	↑	
Traffic Vol, veh/h	0	206	43	0	0	0	65	0	81	163	97	109
Future Vol, veh/h	0	206	43	0	0	0	65	0	81	163	97	109
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	224	47	0	0	0	71	0	88	177	105	118
Number of Lanes	0	1	0	0	0	0	1	0	1	1	1	0
Approach		EB					NB			SB		
Opposing Approach							SB			NB		
Opposing Lanes		0					2			2		
Conflicting Approach Left		SB					EB					
Conflicting Lanes Left		2					1			0		
Conflicting Approach Right		NB								EB		
Conflicting Lanes Right		2					0			1		
HCM Control Delay		11.4					9.1			10.6		
HCM LOS		В					А			В		

Lane	NBLn1	NBLn2	EBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	0%	83%	0%	47%
Vol Right, %	0%	100%	17%	0%	53%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	65	81	249	163	206
LT Vol	65	0	0	163	0
Through Vol	0	0	206	0	97
RT Vol	0	81	43	0	109
Lane Flow Rate	71	88	271	177	224
Geometry Grp	7	7	2	7	7
Degree of Util (X)	0.124	0.122	0.384	0.291	0.314
Departure Headway (Hd)	6.301	4.985	5.106	5.921	5.042
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	572	710	698	602	705
Service Time	4.001	2.784	3.177	3.707	2.828
HCM Lane V/C Ratio	0.124	0.124	0.388	0.294	0.318
HCM Control Delay	9.9	8.5	11.4	11.2	10.2
HCM Lane LOS	А	А	В	В	В
HCM 95th-tile Q	0.4	0.4	1.8	1.2	1.3

3: Westchester Drive & Sherry Lane 2386-20.065A

Existing Timing Plan: PM

Intersection												
Intersection Delay, s/veh	9.3											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	25	131	11	13	67	55	10	64	69	58	73	33
Future Vol, veh/h	25	131	11	13	67	55	10	64	69	58	73	33
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	27	142	12	14	73	60	11	70	75	63	79	36
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	C
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.6			9			8.9			9.5		
HCM LOS	А			А			А			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	7%	15%	10%	35%
Vol Thru, %	45%	78%	50%	45%
Vol Right, %	48%	7%	41%	20%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	143	167	135	164
LT Vol	10	25	13	58
Through Vol	64	131	67	73
RT Vol	69	11	55	33
Lane Flow Rate	155	182	147	178
Geometry Grp	1	1	1	1
Degree of Util (X)	0.202	0.247	0.193	0.241
Departure Headway (Hd)	4.678	4.901	4.739	4.865
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	762	728	751	733
Service Time	2.743	2.966	2.806	2.93
HCM Lane V/C Ratio	0.203	0.25	0.196	0.243
HCM Control Delay	8.9	9.6	9	9.5
HCM Lane LOS	A	А	А	А
HCM 95th-tile Q	0.8	1	0.7	0.9
HCM Lane LOS HCM 95th-tile Q	A 0.8	A 1	A 0.7	A 0.9

03/26/2020 AJV

Synchro 10 Report Page 2

03/26/2020

AJV

ane Group ane Configurations 'raffic Volume (vph) 'uture Volume (vph) 'eak Hour Factor ddj. Flow (vph) Shared Lane Traffic (%) ane Group Flow (vph) 'urn Type	EBL 27 27 0.92	EBT	EBR									
ane Configurations raffic Volume (vph) uture Volume (vph) Peak Hour Factor kdj. Flow (vph) shared Lane Traffic (%) ane Group Flow (vph) rum Type	27 27 0.92	13		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Goungarators Future Volume (vph) Veak Hour Factor kdj. Flow (vph) Shared Lane Traffic (%) ane Group Flow (vph) furn Type	27 27 0.92	13			4		×	##1		*	##1	
Volume (vph) Future Volume (vph) Veak Hour Factor kdj. Flow (vph) Shared Lane Traffic (%) ane Group Flow (vph) Fum Type	27 0.92	10	12	11	37	130	36	309	42	95	828	13
Veak Hour Factor (dj. Flow (vph) Shared Lane Traffic (%) ane Group Flow (vph) fum Type	0.92	13	12	44	37	130	36	300	42	95	828	13
kdj. Flow (vph) Shared Lane Traffic (%) ane Group Flow (vph) furn Type	0.02	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.0
Shared Lane Traffic (%) ane Group Flow (vph) furn Type	29	14	13	48	40	141	39	336	46	103	900	14
ane Group Flow (vph)	25	17	10	-0	40	171	00	000	40	100	500	
urn Type	٥	/3	13	٥	220	٥	30	382	0	103	10/2	
unitype	Perm	NΔ	Perm	Perm	NΔ	0	Perm	NΔ	0	Perm	NΔ	
Protected Phases	1 Cilli	4	1 Cilli	1 Cilli	8		1 GIIII	2		1 CHI	6	
Permitted Phases	1	4	1	8	0		2	2		6	0	
ethilled Thases	4	1	4	8	8		2	2		0	6	
Switch Phase	4	4	4	0	0		2	2		0	J	
linimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Ainimum Colit (c)	0.0 22 F	0.0 22 F	0.0 22 E	0.0 22 E	0.0 22 F		0.0 22 F	0.0 22 F		0.0 22 E	0.0 22 F	
Total Split (s)	22.5	22.0	22.5	22.5	22.0		22.5	22.0		22.5	22.5	
otal Split (S)	30.0	30.0	30.0	30.0	30.0		66 70/	66 70/		66.7%	66 70/	
	33.3%	33.3%	33.3%	33.3%	33.3%		00.7%	00.7%		00.1%	00.1%	
ellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
AII-Red Time (S)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
otal Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
ead/Lag												
ead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		13.7	13.7		13.7		67.3	67.3		67.3	67.3	
Actuated g/C Ratio		0.15	0.15		0.15		0.75	0.75		0.75	0.75	
/c Ratio		0.27	0.05		0.73		0.11	0.10		0.14	0.28	
Control Delay		35.7	10.9		34.9		5.2	3.3		4.8	4.1	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
otal Delay		35.7	10.9		34.9		5.2	3.3		4.8	4.1	
.OS		D	В		С		A	A		A	A	
Approach Delay		29.9			34.9			3.5			4.1	
Approach LOS		С			С			A			A	
Queue Length 50th (ft)		22	0		76		5	15		13	52	
Queue Length 95th (ft)		49	12		140		19	32		39	94	
nternal Link Dist (ft)		296			526			275			240	
urn Bay Length (ft)							100			140		
Base Capacity (vph)		294	461		508		356	3748		720	3744	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.15	0.03		0.45		0.11	0.10		0.14	0.28	
ntersection Summary												
ctuated Cycle Length: 90 Iffset: 0 (0%), Referenced to p	ohase 2:	NBTL and	d 6:SBTL	Start of	Green							
latural Cycle: 45 Control Type: Actuated-Coordin	nated											

1: Douglas Avenue & Luther Lane 2386-20.065A		Background Timing Plan: AM
Intersection Signal Delay: 8.6	Intersection LOS: A	
Intersection Capacity Utilization 53.4%	ICU Level of Service A	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

Ø2 (R)	↓ 04
60 s	30 s
Ø6 (R)	₹ø8
60 s	30 s

03/26/2020 AJV

2: Westchester Drive & Luther Lane 2386-20.065A

Background Timing Plan: AM

Synchro 10 Report Page 1

Intersection												
Intersection Delay, s/veh	9.9											
Intersection LOS	А											
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR

Lane Configurations		4Î					٦		1	٢	•	
Traffic Vol, veh/h	0	88	38	0	0	0	50	0	53	141	134	173
Future Vol, veh/h	0	88	38	0	0	0	50	0	53	141	134	173
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	96	41	0	0	0	54	0	58	153	146	188
Number of Lanes	0	1	0	0	0	0	1	0	1	1	1	0
Approach		EB					NB			SB		
Opposing Approach							SB			NB		
Opposing Lanes		0					2			2		
Conflicting Approach Left		SB					EB					
Conflicting Lanes Left		2					1			0		
Conflicting Approach Right		NB								EB		
Conflicting Lanes Right		2					0			1		
HCM Control Delay		9.3					8.5			10.4		
HCM LOS		А					Α			В		

Lane	NBLn1	NBLn2	EBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	0%	70%	0%	44%
Vol Right, %	0%	100%	30%	0%	56%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	50	53	126	141	307
LT Vol	50	0	0	141	0
Through Vol	0	0	88	0	134
RT Vol	0	53	38	0	173
Lane Flow Rate	54	58	137	153	334
Geometry Grp	7	7	2	7	7
Degree of Util (X)	0.088	0.074	0.191	0.234	0.426
Departure Headway (Hd)	5.845	4.636	5.025	5.494	4.595
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	611	770	714	653	784
Service Time	3.594	2.384	3.063	3.229	2.33
HCM Lane V/C Ratio	0.088	0.075	0.192	0.234	0.426
HCM Control Delay	9.2	7.8	9.3	9.9	10.7
HCM Lane LOS	A	А	А	А	В
HCM 95th-tile Q	0.3	0.2	0.7	0.9	2.1

3: Westchester Drive & Sherry Lane 2386-20.065A

Background Timing Plan: AM

Intersection												
Intersection Delay, s/veh	8.9											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			\$			\$	
Traffic Vol, veh/h	19	45	22	27	108	89	11	49	22	32	84	22
Future Vol, veh/h	19	45	22	27	108	89	11	49	22	32	84	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	49	24	29	117	97	12	53	24	35	91	24
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.4			9.3			8.4			9		
HCM LOS	Α			A			Α			Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		13%	22%	12%	23%							
Vol Thru, %		60%	52%	48%	61%							
Vol Right %		27%	26%	40%	16%							

Vol Thru, %	60%	52%	48%	61%	
Vol Right, %	27%	26%	40%	16%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	82	86	224	138	
LT Vol	11	19	27	32	
Through Vol	49	45	108	84	
RT Vol	22	22	89	22	
Lane Flow Rate	89	93	243	150	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.118	0.121	0.298	0.198	
Departure Headway (Hd)	4.755	4.677	4.405	4.759	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	750	764	813	752	
Service Time	2.803	2.723	2.442	2.805	
HCM Lane V/C Ratio	0.119	0.122	0.299	0.199	
HCM Control Delay	8.4	8.4	9.3	9	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.4	0.4	1.3	0.7	

03/27/2020 AJV Synchro 10 Report Page 2

03/27/2020

AJV

	٦	-	\mathbf{i}	1	-	•	1	Ť	1	×	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		*	1		4		×	**1			441.	
Traffic Volume (vnh)	171	57	71	25	23	147	16	521	61	95	334	41
Future Volume (vph)	171	57	71	25	23	147	16	521	61	95	334	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adi Flow (vnh)	186	62	77	27	25	160	17	566	66	103	363	4
Shared Lane Traffic (%)	100	02			20			000			000	
Lane Group Flow (vph)	0	248	77	0	212	0	17	632	0	103	408	(
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	49.0	49.0	49.0	49.0	49.0		41.0	41.0		41.0	41.0	
Total Split (%)	54.4%	54.4%	54.4%	54.4%	54.4%		45.6%	45.6%		45.6%	45.6%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		24.8	24.8		24.8		56.2	56.2		56.2	56.2	
Actuated g/C Ratio		0.28	0.28		0.28		0.62	0.62		0.62	0.62	
v/c Ratio		0.87	0.16		0.39		0.03	0.20		0.22	0.13	
Control Delay		57.7	5.5		8.5		9.6	8.2		11.3	7.7	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		57.7	5.5		8.5		9.6	8.2		11.3	7.7	
LOS		E	Α		Α		Α	Α		В	А	
Approach Delay		45.3			8.5			8.3			8.4	
Approach LOS		D			А			А			А	
Queue Length 50th (ft)		134	0		22		3	48		23	28	
Queue Length 95th (ft)		194	26		63		15	90		67	57	
Internal Link Dist (ft)		296			526			275			240	
Turn Bay Length (ft)							100			140		
Base Capacity (vph)		513	821		857		585	3132		461	3130	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.48	0.09		0.25		0.03	0.20		0.22	0.13	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to	to phase 2	NBTL an	d 6:SBTL	, Start of	Green							
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.87	amateu											

1: Douglas Avenue & Luther Lane 2386-20.065A		Background Timing Plan: PM
Intersection Signal Delay: 15.4	Intersection LOS: B	
Intersection Capacity Utilization 55.8%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

Ø2 (R)	↓ Ø4	
41 s	49 s	
Ø6 (R)	↓ Ø8	
41 s	49 s	

03/30/2020 AJV

2: Westchester Drive & Luther Lane 2386-20.065A

Background Timing Plan: PM

Synchro 10 Report Page 1

Intersection												
Intersection Delay, s/veh	10.7											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR

Lane Configurations		1					<u>۲</u>		1	<u>۲</u>	↑	
Traffic Vol, veh/h	0	212	44	0	0	0	67	0	83	168	100	112
Future Vol, veh/h	0	212	44	0	0	0	67	0	83	168	100	112
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	230	48	0	0	0	73	0	90	183	109	122
Number of Lanes	0	1	0	0	0	0	1	0	1	1	1	0
Approach		EB					NB			SB		
Opposing Approach							SB			NB		
Opposing Lanes		0					2			2		
Conflicting Approach Left		SB					EB					
Conflicting Lanes Left		2					1			0		
Conflicting Approach Right		NB								EB		
Conflicting Lanes Right		2					0			1		
HCM Control Delay		11.6					9.2			10.7		
HCM LOS		В					Α			В		

Lane	NBLn1	NBLn2	EBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	0%	83%	0%	47%
Vol Right, %	0%	100%	17%	0%	53%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	67	83	256	168	212
LT Vol	67	0	0	168	0
Through Vol	0	0	212	0	100
RT Vol	0	83	44	0	112
Lane Flow Rate	73	90	278	183	230
Geometry Grp	7	7	2	7	7
Degree of Util (X)	0.128	0.129	0.397	0.302	0.325
Departure Headway (Hd)	6.349	5.132	5.14	5.953	5.074
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	568	703	693	599	701
Service Time	4.049	2.832	3.22	3.745	2.865
HCM Lane V/C Ratio	0.129	0.128	0.401	0.306	0.328
HCM Control Delay	10	8.6	11.6	11.3	10.3
HCM Lane LOS	А	А	В	В	В
HCM 95th-tile Q	0.4	0.4	1.9	1.3	1.4

3: Westchester Drive & Sherry Lane 2386-20.065A

Background Timing Plan: PM

SBT

SBR

SBL

NBT

NBR

Intersection Intersection Delay, s/veh Intersection LOS 9.4 А EBL Movement EBT EBR WBL WBT WBR NBL 4 Lane Configurations 4

Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	26	135	11	13	69	57	10	66	71	60	75	34
Future Vol, veh/h	26	135	11	13	69	57	10	66	71	60	75	34
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	28	147	12	14	75	62	11	72	77	65	82	37
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.7			9.1			9			9.6		
HCMLOS	Δ			Δ			Δ			Δ		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	7%	15%	9%	36%	
Vol Thru, %	45%	78%	50%	44%	
Vol Right, %	48%	6%	41%	20%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	147	172	139	169	
LT Vol	10	26	13	60	
Through Vol	66	135	69	75	
RT Vol	71	11	57	34	
Lane Flow Rate	160	187	151	184	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.209	0.256	0.2	0.25	
Departure Headway (Hd)	4.713	4.936	4.772	4.899	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	754	722	745	727	
Service Time	2.784	3.006	2.845	2.968	
HCM Lane V/C Ratio	0.212	0.259	0.203	0.253	
HCM Control Delay	9	9.7	9.1	9.6	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.8	1	0.7	1	

03/26/2020 AJV

Synchro 10 Report Page 2

03/26/2020

AJV

												,
	۶	-	\rightarrow	1	-	•	1	Ť	1	×	Ŧ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		↑	1		4		<u>۲</u>	ተተኈ		<u>۳</u>	<u></u> ↑↑₽	
Fraffic Volume (vph)	27	13	12	44	37	180	36	309	42	97	828	13
Future Volume (vph)	27	13	12	44	37	180	36	309	42	97	828	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	29	14	13	48	40	196	39	336	46	105	900	14
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	43	13	0	284	0	39	382	0	105	1042	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	30.0	30.0	30.0	30.0	30.0		60.0	60.0		60.0	60.0	
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		66.7%	66.7%		66.7%	66.7%	
rellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
.ost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
_ead/Lag												
.ead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		15.0	15.0		15.0		66.0	66.0		66.0	66.0	
Actuated g/C Ratio		0.17	0.17		0.17		0.73	0.73		0.73	0.73	
//c Ratio		0.27	0.05		0.77		0.11	0.10		0.15	0.28	
Control Delay		34.4	10.2		33.5		6.0	3.8		5.4	4.6	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		34.4	10.2		33.5		6.0	3.8		5.4	4.6	
.OS		С	В		С		A	A		A	A	
Approach Delay		28.8			33.5			4.0			4.7	
Approach LOS		С			С			A			A	
Queue Length 50th (ft)		22	0		87		5	16		15	56	
Queue Length 95th (ft)		47	12		158		21	35		43	103	
nternal Link Dist (ft)		296			526			275			240	
Furn Bay Length (ft)							100			140		
Base Capacity (vph)		266	461		536		348	3672		705	3669	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.16	0.03		0.53		0.11	0.10		0.15	0.28	
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to	phase 2:	NBTL an	d 6:SBTL	, Start of	Green							
Vatural Cycle: 45												
Control Type: Actuated-Coor	dinated											
laximum v/c Ratio: 0.77												

1: Douglas Avenue & Luther Lane 2386-20.065A		Buildout Timing Plan: AM
Intersection Signal Delay: 9.5	Intersection LOS: A	
Intersection Capacity Utilization 56.5%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

∫		
60 s	30 s	
Ø6 (R)	₩ Ø8	
60 s	30 s	

06/17/2020 AJV

2: Westchester Drive & Luther Lane 2386-20.065A

Buildout Timing Plan: AM

Synchro 10 Report Page 1

Intersection												
Intersection Delay, s/veh	10.2											
Intersection LOS	В											
Movement	EDI	EDT	EDD	W/DI	W/DT	W/DD	NDI	NDT	NDD	CDI	CDT	CDD

WOVEINEIN	LDL	LDI	LDIX	WDL	VVDI	VVDIX	NDL	NDI	NDN	ODL	301	
Lane Configurations		¢Î					۲		1	٦	•	
Traffic Vol, veh/h	0	88	41	0	0	0	100	0	78	141	138	173
Future Vol, veh/h	0	88	41	0	0	0	100	0	78	141	138	173
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	96	45	0	0	0	109	0	85	153	150	188
Number of Lanes	0	1	0	0	0	0	1	0	1	1	1	0
Approach		EB					NB			SB		
Opposing Approach							SB			NB		
Opposing Lanes		0					2			2		
Conflicting Approach Left		SB					EB					
Conflicting Lanes Left		2					1			0		
Conflicting Approach Right		NB								EB		
Conflicting Lanes Right		2					0			1		
HCM Control Delay		9.6					9.1			10.8		
HCM LOS		А					А			В		

Lane	NBLn1	NBLn2	EBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	0%	68%	0%	44%
Vol Right, %	0%	100%	32%	0%	56%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	100	78	129	141	311
LT Vol	100	0	0	141	0
Through Vol	0	0	88	0	138
RT Vol	0	78	41	0	173
Lane Flow Rate	109	85	140	153	338
Geometry Grp	7	7	2	7	7
Degree of Util (X)	0.177	0.11	0.202	0.238	0.441
Departure Headway (Hd)	5.877	4.667	5.199	5.595	4.7
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	609	763	687	641	764
Service Time	3.635	2.424	3.253	3.341	2.446
HCM Lane V/C Ratio	0.179	0.111	0.204	0.239	0.442
HCM Control Delay	9.9	8	9.6	10.1	11.1
HCM Lane LOS	А	А	А	В	В
HCM 95th-tile Q	0.6	0.4	0.8	0.9	2.3

3: Westchester Drive & Sherry Lane 2386-20.065A

Buildout Timing Plan: AM

Intersection												
Intersection Delay, s/veh	9.2											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			\$			4	
Traffic Vol, veh/h	19	45	22	27	108	92	11	49	22	57	84	22
Future Vol, veh/h	19	45	22	27	108	92	11	49	22	57	84	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	49	24	29	117	100	12	53	24	62	91	24
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.5			9.5			8.5			9.4		
HCM LOS	А			А			А			А		
lane		NBI n1	EBI n1	W/BI n1	SBI n1							

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	13%	22%	12%	35%
Vol Thru, %	60%	52%	48%	52%
Vol Right, %	27%	26%	41%	13%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	82	86	227	163
LT Vol	11	19	27	57
Through Vol	49	45	108	84
RT Vol	22	22	92	22
Lane Flow Rate	89	93	247	177
Geometry Grp	1	1	1	1
Degree of Util (X)	0.119	0.124	0.307	0.237
Departure Headway (Hd)	4.808	4.759	4.473	4.814
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	741	749	802	742
Service Time	2.868	2.814	2.517	2.867
HCM Lane V/C Ratio	0.12	0.124	0.308	0.239
HCM Control Delay	8.5	8.5	9.5	9.4
HCM Lane LOS	А	А	А	А
HCM 95th-tile Q	0.4	0.4	1.3	0.9

06/17/2020 AJV Synchro 10 Report Page 2

06/17/2020 AJV

Lane Group I Lane Configurations Traffic Volume (vph) Future Volume (vph) Peak Hour Factor (C Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Unm Type P Protected Phases Permitted Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) Ziotal Split (s) 24 Total Split (s) 54 Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Sister State Stat	EBL 171 171 171 0.92 186 0 Perm 4 4 5.0 22.5 49.0 44%	EBT	EBR 71 71 0.92 77 77 Perm 4 4	WBL 25 25 0.92 27 0 Perm 8 8	WBT 23 23 0.92 25 210 NA 8	WBR 145 145 0.92 158 0	NBL 16 16 0.92 17 17 Perm	NBT 521 521 0.92 566 632 NA	NBR 61 61 0.92 66 0	SBL 116 116 0.92 126 126 Perm	SBT 334 334 0.92 363 408 NA	SBF 41 41 0.92 45 0
ane Configurations rraffic Volume (vph) Future Volume (vph) Peak Hour Factor (() value Factor (() value Volume (vph) () shared Lane Traffic (%) () ane Group Flow (vph) () 'um Type P Protected Phases () Detector Phase () Switch Phase () Minimum Initial (s) () fotal Split (s) (2) fotal Split (s) 54 HeRed Time (s) () Jul-Red Time (s) ()	171 171 0.92 186 0 Perm 4 4 5.0 22.5 49.0 14%	↑ 57 57 0.92 62 248 NA 4 4 5.0 225	71 71 0.92 77 77 Perm 4 4	25 25 0.92 27 0 Perm	 ♣ 23 23 0.92 25 210 NA 8 	145 145 0.92 158 0	16 16 0.92 17 17 Perm	↑↑₽ 521 521 0.92 566 632 NA	61 61 0.92 66 0	116 116 0.92 126 126 Perm	↑↑↓ 334 334 0.92 363 408 NA	41 41 0.92 45
Traffic Volume (vph) viuture Volume (vph) Veak Hour Factor (0 Viature Volume (vph) (0) Shared Lane Traffic (%) (0) ane Group Flow (vph) (0) 'um Type P 'Protected Phases (0) 'ermitted Phases (0) Variant Initial (s) (0) Minimum Initial (s) (1) Vinimum Split (s) 2 'otal Split (%) 54 Velow Time (s) UN-Red Time (s) ost Time Adjust (s) (1)	171 171 0.92 186 0 Perm 4 4 5.0 22.5 49.0 4 4%	57 57 0.92 62 248 NA 4 4 5.0	71 71 0.92 77 77 Perm 4 4	25 25 0.92 27 0 Perm 8	23 23 0.92 25 210 NA 8	145 145 0.92 158 0	16 16 0.92 17 17 Perm	521 521 0.92 566 632 NA	61 61 0.92 66 0	116 116 0.92 126 126 Perm	334 334 0.92 363 408 NA	4 4 0.92 4
uture Volume (vph) teak Hour Factor (d) vij, Flow (vph) (hard Lane Traffic (%)) ane Group Flow (vph) (im) um Type P trotected Phases (for the second	171 0.92 186 0 Perm 4 4 4 5.0 22.5 49.0 4 4%	57 0.92 62 248 NA 4 4 5.0	71 0.92 77 77 Perm 4 4	25 0.92 27 0 Perm	23 0.92 25 210 NA 8	145 0.92 158 0	16 0.92 17 17 Perm	521 0.92 566 632 NA	61 0.92 66 0	116 0.92 126 126 Perm	334 0.92 363 408 NA	4 0.9 4
Veak Hour Factor () (d), Flow (vph) () shared Lane Traffic (%) (%) ane Group Flow (vph) () um Type P rotected Phases () vermitted Phases () betector Phase () witch Phase () linimum Split (s) (2) otal Split (s) (2) otal Split (s) 54 Ji-Red Time (s) () Ji-Red Time (s) ()	0.92 186 0 Perm 4 4 4 5.0 22.5 49.0 4.4%	0.92 62 248 NA 4 4	0.92 77 77 Perm 4 4	0.92 27 0 Perm 8	0.92 25 210 NA 8	0.92 158 0	0.92 17 17 Perm	0.92 566 632 NA	0.92 66 0	0.92 126 126 Perm	0.92 363 408 NA	0.9: 4:
kdj. Flow (vph) shared Lane Traffic (%) ane Group Flow (vph) 'um Type P Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Jinimum Split (s) 'otal Split (s) 'otal Split (s) UR-Rd Time (s) JU-Red Time (s)	186 0 Perm 4 4 4 5.0 22.5 49.0 4 4%	62 248 NA 4 4 5.0	77 77 Perm 4 4	27 0 Perm 8	25 210 NA 8	158 0	17 17 Perm	566 632 NA	66 0	126 126 Perm	363 408 NA	4
Shared Lane Traffic (%) ane Group Flow (vph) furn Type P Protected Phases Permitted Phases Detector Phase Witch Phase Setector Phase Witch Phase Detector Phase Setector Phase Witch Phase Diamum Initial (s) Inimum Split (s) 2 Otal Split (%) 54 Vellow Time (s) UR-Red Time (s) ost Time Adjust (s)	0 Perm 4 4 5.0 22.5 49.0 4.4%	248 NA 4 4	77 Perm 4 4	0 Perm 8	210 NA 8	0	17 Perm	632 NA	0	126 Perm	408 NA	(
ane Group Flow (vph) 'um Type P 'protected Phases P 'protected Phases P Detector Phase P Writch Phase P Minimum Initial (s) Minimum Split (s) Total Split (s) 2 'otal Split (s) 54 'Herd Time (s) JuRed Time (s) ost Time Adjust (s) S	0 Perm 4 4 5.0 22.5 49.0 4.4%	248 NA 4 5.0	77 Perm 4 4	0 Perm 8	210 NA 8	0	17 Perm	632 NA	0	126 Perm	408 NA	(
Turn Type P Protected Phases Permitted Phases Petertor Phase Switch Phase Minimum Initial (s) Minimum Split (s) Jinimum Split (s) 2 Total Split (s) 4 Fold Split (s) 54 Vertex (s) SH-Red Time (s) Subtract (s) Subtract (s)	2 Perm 4 4 5.0 22.5 49.0 4 4%	NA 4 5.0	Perm 4 4	Perm 8	NA 8		Perm	NA		Perm	NA	
Protected Phases Permitted Phases Detector Phase Switch Phase Jinimum Initial (s) Jinimum Split (s) Cotal Split (s) Fotal Split (s) Value Julineum (s) Juli-Red Time (s) Solt Time Adjust (s)	4 4 5.0 22.5 49.0 1 4%	4 4 5.0	4 4	8 9	8			^				
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Jinimum Split (s) 2 Otal Split (s) 4 Otal Split (s) 54 Vellow Time (s) 4 UR-Red Time (s) 54	4 4 5.0 22.5 49.0 1 4%	4 5.0	4 4	8 9				2			6	
Detector Phase witch Phase linimum Initial (s) linimum Split (s) 2 Total Split (s) 4 otal Split (%) 54 URed Time (s) JI-Red Time (s) ost Time Adjust (s) 54	4 5.0 22.5 49.0 1 4%	4 5.0	4	Q			2			6		
Switch Phase finimum Initial (s) finimum Split (s) 2 fotal Split (s) 4 otal Split (%) 54 JLRed Time (s) JLRed Time (s) ost Time Adjust (s) 54	5.0 22.5 49.0 1 4%	5.0		0	8		2	2		6	6	
Minimum Initial (s) Minimum Split (s) 2 Total Split (s) 4 Vala Split (%) 54 Yellow Time (s) 4 UHRed Time (s) 54 ost Time Adjust (s) 54	5.0 22.5 49.0 1 4%	5.0										
dinimum Split (s) 2 otal Split (s) 4 Total Split (%) 54 vellow Time (s) 4 UH-Red Time (s) 5 ost Time Adjust (s) 5	22.5 49.0 1 4%	22 F	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Fotal Split (s) 4 Fotal Split (%) 54 Yellow Time (s) 54 All-Red Time (s) 54 .ost Time Adjust (s) 54	49.0	22.3	22.5	22.5	22.5		22.5	22.5		22.5	22.5	
Fotal Split (%) 54 Yellow Time (s) All-Red Time (s) .ost Time Adjust (s)	14%	49.0	49.0	49.0	49.0		41.0	41.0		41.0	41.0	
Yellow Time (s) All-Red Time (s) .ost Time Adjust (s)		54.4%	54.4%	54.4%	54.4%		45.6%	45.6%		45.6%	45.6%	
All-Red Time (s) .ost Time Adjust (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
ost Time Adjust (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
otal Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
.ead/Lag												
_ead-Lag Optimize?												
Recall Mode N	lone	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		24.8	24.8		24.8		56.2	56.2		56.2	56.2	
Actuated g/C Ratio		0.28	0.28		0.28		0.62	0.62		0.62	0.62	
r/c Ratio		0.86	0.16		0.38		0.03	0.20		0.27	0.13	
Control Delay		56.8	5.5		8.5		9.6	8.2		11.9	7.7	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		56.8	5.5		8.5		9.6	8.2		11.9	7.7	
.OS		E	A		A		A	A		В	Α	
Approach Delay		44.6			8.5			8.3			8.7	
Approach LOS		D			A			A			A	
Queue Length 50th (ft)		134	0		22		3	48		29	28	
Queue Length 95th (ft)		194	26		63		15	90		83	57	
nternal Link Dist (ft)		296			526			275			240	
furn Bay Length (ft)							100			140		
Base Capacity (vph)		516	821		856		585	3132		461	3130	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.48	0.09		0.25		0.03	0.20		0.27	0.13	
Itersection Summary												
Sycie Length: 90												
Actuated Cycle Length: 90		NDT	10.0DT	04-1-1	0							
Unset: U (U%), Referenced to pha	ase 2:	NBIL and	3 6:SB [L	, Start of	Green							
Natural Cycle: 45												
Control Type: Actuated-Coordinal	ited											

1: Douglas Avenue & Luther Lane		Buildout
2386-20.065A		Timing Plan: PM
Intersection Signal Delay: 15.3	Intersection LOS: B	
Intersection Capacity Utilization 56.8%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

Ø2 (R)	↓ Ø4	
41 s	49 s	
Ø6 (R)	↓ Ø8	
41 s	49 s	

06/17/2020 AJV

2: Westchester Drive & Luther Lane 2386-20.065A

Buildout Timing Plan: PM

Intersection												
Intersection Delay, s/veh	11.3											
Intersection LOS	В											
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR

Lane Configurations		¢Î					٦		1	٦	•	
Traffic Vol, veh/h	0	212	65	0	0	0	65	0	82	168	133	112
Future Vol, veh/h	0	212	65	0	0	0	65	0	82	168	133	112
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	230	71	0	0	0	71	0	89	183	145	122
Number of Lanes	0	1	0	0	0	0	1	0	1	1	1	0
Approach		EB					NB			SB		1
Opposing Approach							SB			NB		
Opposing Lanes		0					2			2		
Conflicting Approach Left		SB					EB					
Conflicting Lanes Left		2					1			0		
Conflicting Approach Right		NB								EB		
Conflicting Lanes Right		2					0			1		
HCM Control Delay		12.2					9.4			11.4		
HCM LOS		В					А			В		

Lane	NBLn1	NBLn2	EBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	0%	77%	0%	54%
Vol Right, %	0%	100%	23%	0%	46%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	65	82	277	168	245
LT Vol	65	0	0	168	0
Through Vol	0	0	212	0	133
RT Vol	0	82	65	0	112
Lane Flow Rate	71	89	301	183	266
Geometry Grp	7	7	2	7	7
Degree of Util (X)	0.127	0.13	0.432	0.31	0.391
Departure Headway (Hd)	6.481	5.262	5.271	6.117	5.291
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	555	685	686	592	684
Service Time	4.191	2.972	3.271	3.821	2.991
HCM Lane V/C Ratio	0.128	0.13	0.439	0.309	0.389
HCM Control Delay	10.1	8.8	12.2	11.5	11.3
HCM Lane LOS	В	А	В	В	В
HCM 95th-tile Q	0.4	0.4	2.2	1.3	1.9

3: Westchester Drive & Sherry Lane 2386-20.065A

Buildout Timing Plan: PM

Intersection												
Intersection Delay, s/veh	9.5											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	26	135	11	13	69	86	10	66	71	59	75	34
Future Vol, veh/h	26	135	11	13	69	86	10	66	71	59	75	34
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	28	147	12	14	75	93	11	72	77	64	82	37
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.8			9.3			9.2			9.7		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	7%	15%	8%	35%
Vol Thru, %	45%	78%	41%	45%
Vol Right, %	48%	6%	51%	20%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	147	172	168	168
LT Vol	10	26	13	59
Through Vol	66	135	69	75
RT Vol	71	11	86	34
Lane Flow Rate	160	187	183	183
Geometry Grp	1	1	1	1
Degree of Util (X)	0.212	0.259	0.239	0.252
Departure Headway (Hd)	4.784	4.979	4.714	4.969
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	741	714	754	716
Service Time	2.868	3.058	2.793	3.051
HCM Lane V/C Ratio	0.216	0.262	0.243	0.256
HCM Control Delay	9.2	9.8	9.3	9.7
HCM Lane LOS	A	А	А	А
HCM 95th-tile Q	0.8	1	0.9	1

06/17/2020 AJV Synchro 10 Report Page 2

06/17/2020 AJV

										١.	1	,
	•	-	\mathbf{r}	1	-	 	1	Ť	1	>	÷	*
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		•	1		4		٦	44Þ		ሻ	44Þ	
raffic Volume (vph)	28	14	13	47	39	186	38	325	44	102	871	13
uture Volume (vph)	28	14	13	47	39	186	38	325	44	102	871	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	30	15	14	51	42	202	41	353	48	111	947	15
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	45	14	0	295	0	41	401	0	111	1097	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
/inimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Vinimum Split (s)	22.5	22.5	22.5	22.5	22.5		22.5	22.5		22.5	22.5	
Fotal Split (s)	30.0	30.0	30.0	30.0	30.0		60.0	60.0		60.0	60.0	
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		66.7%	66.7%		66.7%	66.7%	
(ellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
ost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
ead/Lag		4.0	4.0		-1.0		4.0	1.0		1.0	1.0	
ead-Lag Ontimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effet Green (s)	None	15.9	15.9	None	15.9		65 1	65 1		65.1	65.1	
Actuated a/C Ratio		0.18	0.18		0.18		0.72	0.72		0.72	0.72	
le Patio		0.10	0.10		0.10		0.12	0.12		0.12	0.72	
Control Dolov		22.1	10.00		24.4		0.13	4.0		5.0	5.0	
		0.0	10.5		0.0		0.0	4.0		0.0	0.0	
Zueue Delay		33.1	10.3		34.4		0.0	1.0		5.8	5.0	
		33.1	10.5		J4.4 C		0.0	4.0		5.0	5.0	
LUS Approach Dolov		27.7	D		24.4		A	A 12		A	A 5 1	
Approach LOS		21.1			J4.4 C			4.5			0.1	
Approach Los		00	0		05		0	A 40		47	A (2)	
Queue Length SUth (ft)		22	10		95		0	10		17	03	
Jueue Length 95th (ft)		48	13		108		23	38		47	114	
nternal Link Dist (ft)		296			520		100	2/5		440	240	
Tum Bay Length (III)		070	404		524		100	2007		140	2000	
Base Capacity (vpn)		2/6	401		534		320	3027		683	3620	
Starvation Cap Reductin		0	0		0		0	0		0	0	
Spilipack Cap Reducth		U	U		0		U	0		Û	0	
storage Cap Reductin		0	0		0		0	0		0	0 20	
keduced V/C Ratio		0.16	0.03		0.55		0.13	0.11		0.16	0.30	
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to Natural Cycle: 45	o phase 2:	NBTL an	d 6:SBTL	, Start of	Green							
Control Type: Actuated-Cool	rdinated											
laximum v/c Ratio: 0.78												

1: Douglas Avenue & Luther Lane 2386-20.065A		Horizon Timing Plan: AM
Intersection Signal Delay: 9.9	Intersection LOS: A	
Intersection Capacity Utilization 58.1%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

Ø2 (R)		
60 s	30 s	
Ø6 (R)	₹Ø8	
60 s	30 s	

06/17/2020 AJV

	٠		~		+	4	•	+	*	1	I	1
	-		•	•		~	7		7	-	*	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations			<u> </u>		↔		<u>1</u>	TTP		<u></u>	TTP	
Traffic Volume (vph)	180	60	/5	26	24	153	1/	548	64	120	351	4
Future Volume (vph)	180	60	/5	26	24	153	1/	548	64	120	351	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	196	65	82	28	26	166	18	596	70	130	382	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	261	82	0	220	0	18	666	0	130	429	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		•	8		•	2		•	6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
winimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	49.0	49.0	49.0	49.0	49.0		41.0	41.0		41.0	41.0	
Total Split (%)	54.4%	54.4%	54.4%	54.4%	54.4%		45.6%	45.6%		45.6%	45.6%	
Yellow Lime (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5	4.5		4.5		4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effet Green (s)		26.2	26.2		26.2		54.8	54.8		54.8	54.8	
Actuated g/C Ratio		0.29	0.29		0.29		0.61	0.61		0.61	0.61	
v/c Ratio		0.86	0.16		0.39		0.03	0.22		0.30	0.14	
Control Delay		55.3	5.0		8.7		10.4	9.0		13.4	8.4	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		55.3	5.0		8.7		10.4	9.0		13.4	8.4	
LOS		E	A		A		В	A		В	A	
Approach Delay		43.3			8.7			9.0			9.5	
Approach LOS		D			A			A			A	
Queue Length 50th (ft)		140	0		26		4	54		32	32	
Queue Length 95th (ft)		200	26		66		17	99		92	63	
Internal Link Dist (ft)		296			526			275			240	
Turn Bay Length (ft)							100			140		
Base Capacity (vph)		513	824		855		558	3056		431	3057	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.51	0.10		0.26		0.03	0.22		0.30	0.14	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90					_							
Offset: 0 (0%), Referenced t Natural Cycle: 50	o phase 2:	NBTL an	d 6:SBTL	, Start of	Green							
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.86												

1: Douglas Avenue & Luther Lane 2386-20.065A		Horizon Timing Plan: PM
Intersection Signal Delay: 15.6	Intersection LOS: B	
Intersection Capacity Utilization 58.9%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Douglas Avenue & Luther Lane

Ø2 (R)		
41 s	49 s	
Ø6 (R)	₹Ø8	
41 s	49.8	

06/17/2020 AJV

APPENDIX E. Site Access Evaluation Supplement

Driveway Spacing

Preston Center Development, Dallas, Texas PK 2386-20.065A (AJV: 03/26/20)

APPENDIX E1

